Effect of ruthenium on microstructure and high-temperature creep properties of fourth generation Ni-based single-crystal superalloys | |
Song, W.1,2; Wang, X. G.1; Li, J. G.1; Ye, L. H.1; Hou, G. C.1; Yang, Y. H.1; Liu, J. L.1; Liu, J. D.1; Pei, W. L.2; Zhou, Y. Z.1; Sun, X. F.1 | |
通讯作者 | Wang, X. G.(xgwang11b@imr.ac.cn) ; Pei, W. L.(peiwl@atm.neu.edu.cn) ; Sun, X. F.(xfsun@imr.ac.cn) |
2020-01-20 | |
发表期刊 | MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
![]() |
ISSN | 0921-5093 |
卷号 | 772页码:10 |
摘要 | The effects of Ru on microstructure and creep properties of the two alloys were investigated in detail. According to the creep curves of the two alloys at 1140 degrees C/137 MPa, the creep rupture life was significantly improved with the increase of Ru and the mechanism of each stage during the creep deformation was different. Thus, the evolution of the gamma' phase, the dislocation configuration, and the effect of Ru on solution strengthening were discussed. The gamma/gamma' lattice misfit of the initial microstructure presented increasingly negative as the content of Ru increased, which resulted in smaller and more regular gamma' particles in the initial state. Meanwhile, more consistent and denser dislocation networks on the gamma/gamma' interface during creep deformation were examined. Hence, the addition of Ru decreased the minimum creep rate and prolonged the secondary creep stage. Moreover, the so-called "reverse partitioning" behavior and enhancement of gamma matrix strength appeared with the increase of Ru. When the alloy contained 2.5 wt% Ru, the rapidly increasing in creep strain rate induced by the topological inversion appeared. When the alloy included 3.5 wt% Ru, the needle-like and rod-like topologically close-packed (TCP) phases were observed occasionally. The stress and the supersaturation of refractory elements resulted in the precipitation of the TCP phase. The dramatic increase of the creep strain rate was principally related to the propagation of micro-cracks around the casting and creep voids in the necked regions. |
关键词 | Ni-based superalloys Ruthenium Elevated temperature creep gamma/gamma ' lattice misfit Interfacial dislocation networks |
资助者 | National Science and Technology Major Project (2017) ; National Key R&D Program of China ; National Natural Science Foundation of China (NSFC) ; State Key Lab of Advanced Metals and Materials Open Fund |
DOI | 10.1016/j.msea.2019.138646 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Science and Technology Major Project (2017)[VI-0002-0072] ; National Key R&D Program of China[2017YFA0700704] ; National Natural Science Foundation of China (NSFC)[51601192] ; National Natural Science Foundation of China (NSFC)[51671188] ; State Key Lab of Advanced Metals and Materials Open Fund[2018-Z07] |
WOS研究方向 | Science & Technology - Other Topics ; Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000509621500089 |
出版者 | ELSEVIER SCIENCE SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/137255 |
专题 | 中国科学院金属研究所 |
通讯作者 | Wang, X. G.; Pei, W. L.; Sun, X. F. |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Superalloys Div, 72 Wenhua Rd, Shenyang 110016, Peoples R China 2.Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China |
推荐引用方式 GB/T 7714 | Song, W.,Wang, X. G.,Li, J. G.,et al. Effect of ruthenium on microstructure and high-temperature creep properties of fourth generation Ni-based single-crystal superalloys[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2020,772:10. |
APA | Song, W..,Wang, X. G..,Li, J. G..,Ye, L. H..,Hou, G. C..,...&Sun, X. F..(2020).Effect of ruthenium on microstructure and high-temperature creep properties of fourth generation Ni-based single-crystal superalloys.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,772,10. |
MLA | Song, W.,et al."Effect of ruthenium on microstructure and high-temperature creep properties of fourth generation Ni-based single-crystal superalloys".MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 772(2020):10. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论