Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass | |
Pan, J.1; Ivanov, Yu. P.2,3; Zhou, W. H.1,4; Li, Y.1; Greer, A. L.2 | |
Corresponding Author | Li, Y.(liyi@imr.ac.cn) ; Greer, A. L.(alg13@cam.ac.uk) |
2020-02-01 | |
Source Publication | NATURE
![]() |
ISSN | 0028-0836 |
Volume | 578Issue:7796Pages:559-+ |
Abstract | Strain-hardening (the increase of flow stress with plastic strain) is the most important phenomenon in the mechanical behaviour of engineering alloys because it ensures that flow is delocalized, enhances tensile ductility and inhibits catastrophic mechanical failure(1,2). Metallic glasses (MGs) lack the crystallinity of conventional engineering alloys, and some of their properties-such as higher yield stress and elastic strain limit(3)-are greatly improved relative to their crystalline counterparts. MGs can have high fracture toughness and have the highest known 'damage tolerance' (defined as the product of yield stress and fracture toughness)(4) among all structural materials. However, the use of MGs in structural applications is largely limited by the fact that they show strain-softening instead of strain-hardening; this leads to extreme localization of plastic flow in shear bands, and is associated with early catastrophic failure in tension. Although rejuvenation of an MG (raising its energy to values that are typical of glass formation at a higher cooling rate) lowers its yield stress, which might enable strain-hardening(5), it is unclear whether sufficient rejuvenation can be achieved in bulk samples while retaining their glassy structure. Here we show that plastic deformation under triaxial compression at room temperature can rejuvenate bulk MG samples sufficiently to enable strain-hardening through a mechanism that has not been previously observed in the metallic state. This transformed behaviour suppresses shear-banding in bulk samples in normal uniaxial (tensile or compressive) tests, prevents catastrophic failure and leads to higher ultimate flow stress. The rejuvenated MGs are stable at room temperature and show exceptionally efficient strain-hardening, greatly increasing their potential use in structural applications. Bulk metallic glasses can acquire the ability to strain-harden through a mechanical rejuvenation treatment at room temperature that retains their non-crystalline structure. |
Funding Organization | National Natural Science Foundation of China ; Shenyang National Laboratory for Materials Science ; European Research Council under the European Union |
DOI | 10.1038/s41586-020-2016-3 |
Indexed By | SCI |
Language | 英语 |
Funding Project | National Natural Science Foundation of China[51871217] ; Shenyang National Laboratory for Materials Science ; European Research Council under the European Union[ERC-2015-AdG-695487] |
WOS Research Area | Science & Technology - Other Topics |
WOS Subject | Multidisciplinary Sciences |
WOS ID | WOS:000516571100016 |
Publisher | NATURE PUBLISHING GROUP |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/137424 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Li, Y.; Greer, A. L. |
Affiliation | 1.Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang, Peoples R China 2.Univ Cambridge, Dept Mat Sci & Met, Cambridge, England 3.Far Eastern Fed Univ, Sch Nat Sci, Vladivostok, Russia 4.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei, Peoples R China |
Recommended Citation GB/T 7714 | Pan, J.,Ivanov, Yu. P.,Zhou, W. H.,et al. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass[J]. NATURE,2020,578(7796):559-+. |
APA | Pan, J.,Ivanov, Yu. P.,Zhou, W. H.,Li, Y.,&Greer, A. L..(2020).Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass.NATURE,578(7796),559-+. |
MLA | Pan, J.,et al."Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass".NATURE 578.7796(2020):559-+. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment