Monolayer carbon-encapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting | |
Majeed, Abdul1,2; Li, Xin1,3; Hou, Peng-Xiang1,3; Tabassum, Hassina4; Zhang, Lili1,3; Liu, Chang1,3; Cheng, Hui-Ming1,5 | |
Corresponding Author | Hou, Peng-Xiang(pxhou@imr.ac.cn) ; Liu, Chang(cliu@imr.ac.cn) |
2020-07-15 | |
Source Publication | APPLIED CATALYSIS B-ENVIRONMENTAL
![]() |
ISSN | 0926-3373 |
Volume | 269Pages:6 |
Abstract | Electrochemical water splitting is regarded as a sustainable and cost-effective route for the production of hydrogen. However, the high-cost and poor stability of traditional rare-earth metal-based electrocatalysts make it difficult to yield hydrogen economically. Here, we report an efficient and durable film electrocatalyst of N-doped monolayer carbon encapsulated Mo-doped ultrafine Ni nanoparticles anchored on single-wall carbon nanotube network (NMoNi/SWCNT) for total water splitting in an alkaline solution. The single layer carbon prevents oxidation of encapsulated Ni and Mo species and facilitates desired electronic structure modulation to achieve a high catalytic activity. Hence, the freestanding NMoNi/SWCNT film catalyst shows low overpotentials of 255 mV and 130 mV to attain a current density of 10 mA cm(-2) for oxygen evolution reaction and hydrogen evolution reaction, respectively, with a good stability. More importantly, the NMoNi/SWCNT film only requires a potential of 1.6 V to reach a current density of 20 mA cm(-2) when employed as both anode and cathode for a total water splitting. |
Keyword | Bifunctional electrocatalysis Ni nanoparticles Carbon encapsulated Single-wall carbon nanotube Water splitting |
Funding Organization | Ministry of Science and Technology of China ; National Natural Science Foundation of China |
DOI | 10.1016/j.apcatb.2020.118823 |
Indexed By | SCI |
Language | 英语 |
Funding Project | Ministry of Science and Technology of China[2016YFA0200101] ; National Natural Science Foundation of China[51625203] ; National Natural Science Foundation of China[51532008] ; National Natural Science Foundation of China[51521091] ; National Natural Science Foundation of China[51572264] ; National Natural Science Foundation of China[51772303] ; National Natural Science Foundation of China[51872293] |
WOS Research Area | Chemistry ; Engineering |
WOS Subject | Chemistry, Physical ; Engineering, Environmental ; Engineering, Chemical |
WOS ID | WOS:000532683200060 |
Publisher | ELSEVIER |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/138835 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Hou, Peng-Xiang; Liu, Chang |
Affiliation | 1.Chinese Acad Sci, Inst Met Res IMR, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China 2.Univ Chinese Acad Sci UCAS, 19 A Yuquan Rd, Beijing 100049, Peoples R China 3.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 110016, Peoples R China 4.Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China 5.Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst TBSI, Shenzhen 518055, Peoples R China |
Recommended Citation GB/T 7714 | Majeed, Abdul,Li, Xin,Hou, Peng-Xiang,et al. Monolayer carbon-encapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting[J]. APPLIED CATALYSIS B-ENVIRONMENTAL,2020,269:6. |
APA | Majeed, Abdul.,Li, Xin.,Hou, Peng-Xiang.,Tabassum, Hassina.,Zhang, Lili.,...&Cheng, Hui-Ming.(2020).Monolayer carbon-encapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting.APPLIED CATALYSIS B-ENVIRONMENTAL,269,6. |
MLA | Majeed, Abdul,et al."Monolayer carbon-encapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting".APPLIED CATALYSIS B-ENVIRONMENTAL 269(2020):6. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment