IMR OpenIR
Monolayer carbon-encapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting
Majeed, Abdul1,2; Li, Xin1,3; Hou, Peng-Xiang1,3; Tabassum, Hassina4; Zhang, Lili1,3; Liu, Chang1,3; Cheng, Hui-Ming1,5
Corresponding AuthorHou, Peng-Xiang(pxhou@imr.ac.cn) ; Liu, Chang(cliu@imr.ac.cn)
2020-07-15
Source PublicationAPPLIED CATALYSIS B-ENVIRONMENTAL
ISSN0926-3373
Volume269Pages:6
AbstractElectrochemical water splitting is regarded as a sustainable and cost-effective route for the production of hydrogen. However, the high-cost and poor stability of traditional rare-earth metal-based electrocatalysts make it difficult to yield hydrogen economically. Here, we report an efficient and durable film electrocatalyst of N-doped monolayer carbon encapsulated Mo-doped ultrafine Ni nanoparticles anchored on single-wall carbon nanotube network (NMoNi/SWCNT) for total water splitting in an alkaline solution. The single layer carbon prevents oxidation of encapsulated Ni and Mo species and facilitates desired electronic structure modulation to achieve a high catalytic activity. Hence, the freestanding NMoNi/SWCNT film catalyst shows low overpotentials of 255 mV and 130 mV to attain a current density of 10 mA cm(-2) for oxygen evolution reaction and hydrogen evolution reaction, respectively, with a good stability. More importantly, the NMoNi/SWCNT film only requires a potential of 1.6 V to reach a current density of 20 mA cm(-2) when employed as both anode and cathode for a total water splitting.
KeywordBifunctional electrocatalysis Ni nanoparticles Carbon encapsulated Single-wall carbon nanotube Water splitting
Funding OrganizationMinistry of Science and Technology of China ; National Natural Science Foundation of China
DOI10.1016/j.apcatb.2020.118823
Indexed BySCI
Language英语
Funding ProjectMinistry of Science and Technology of China[2016YFA0200101] ; National Natural Science Foundation of China[51625203] ; National Natural Science Foundation of China[51532008] ; National Natural Science Foundation of China[51521091] ; National Natural Science Foundation of China[51572264] ; National Natural Science Foundation of China[51772303] ; National Natural Science Foundation of China[51872293]
WOS Research AreaChemistry ; Engineering
WOS SubjectChemistry, Physical ; Engineering, Environmental ; Engineering, Chemical
WOS IDWOS:000532683200060
PublisherELSEVIER
Citation statistics
Cited Times:10[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/138835
Collection中国科学院金属研究所
Corresponding AuthorHou, Peng-Xiang; Liu, Chang
Affiliation1.Chinese Acad Sci, Inst Met Res IMR, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
2.Univ Chinese Acad Sci UCAS, 19 A Yuquan Rd, Beijing 100049, Peoples R China
3.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 110016, Peoples R China
4.Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
5.Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst TBSI, Shenzhen 518055, Peoples R China
Recommended Citation
GB/T 7714
Majeed, Abdul,Li, Xin,Hou, Peng-Xiang,et al. Monolayer carbon-encapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting[J]. APPLIED CATALYSIS B-ENVIRONMENTAL,2020,269:6.
APA Majeed, Abdul.,Li, Xin.,Hou, Peng-Xiang.,Tabassum, Hassina.,Zhang, Lili.,...&Cheng, Hui-Ming.(2020).Monolayer carbon-encapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting.APPLIED CATALYSIS B-ENVIRONMENTAL,269,6.
MLA Majeed, Abdul,et al."Monolayer carbon-encapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting".APPLIED CATALYSIS B-ENVIRONMENTAL 269(2020):6.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Majeed, Abdul]'s Articles
[Li, Xin]'s Articles
[Hou, Peng-Xiang]'s Articles
Baidu academic
Similar articles in Baidu academic
[Majeed, Abdul]'s Articles
[Li, Xin]'s Articles
[Hou, Peng-Xiang]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Majeed, Abdul]'s Articles
[Li, Xin]'s Articles
[Hou, Peng-Xiang]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.