IMR OpenIR
Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials
Ren, Qingyong1; Fu, Chenguang2; Qiu, Qinyi3; Dai, Shengnan4; Liu, Zheyuan1; Masuda, Takatsugu5; Asai, Shinichiro5; Hagihala, Masato6; Lee, Sanghyun6; Torri, Shuki6; Kamiyama, Takashi6,7; He, Lunhua8,9,10; Tong, Xin10,11; Felser, Claudia2; Singh, David J.12,13; Zhu, Tiejun3; Yang, Jiong4; Ma, Jie1,14
Corresponding AuthorFu, Chenguang(Chenguang.Fu@cpfs.mpg.de) ; Yang, Jiong(jiongy@t.shu.edu.cn) ; Ma, Jie(jma3@sjtu.edu.cn)
2020-06-19
Source PublicationNATURE COMMUNICATIONS
ISSN2041-1723
Volume11Issue:1Pages:9
AbstractChemical doping is one of the most important strategies for tuning electrical properties of semiconductors, particularly thermoelectric materials. Generally, the main role of chemical doping lies in optimizing the carrier concentration, but there can potentially be other important effects. Here, we show that chemical doping plays multiple roles for both electron and phonon transport properties in half-Heusler thermoelectric materials. With ZrNiSn-based half-Heusler materials as an example, we use high-quality single and polycrystalline crystals, various probes, including electrical transport measurements, inelastic neutron scattering measurement, and first-principles calculations, to investigate the underlying electron-phonon interaction. We find that chemical doping brings strong screening effects to ionized impurities, grain boundary, and polar optical phonon scattering, but has negligible influence on lattice thermal conductivity. Furthermore, it is possible to establish a carrier scattering phase diagram, which can be used to select reasonable strategies for optimization of the thermoelectric performance. Chemical doping plays an important role in tuning carrier concentration of materials, but its influence on other aspects of electrical properties is less known. Here, the authors find that chemical doping brings strong screening effects to ionized impurities, grain boundary, and polar optical phonon scattering.
Funding OrganizationNational Science Foundation of China ; Shanghai talent program ; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) ; Alexander von Humboldt Foundation ; Natural Science Foundation of China ; 111 project ; National Science Fund for Distinguished Young Scholars ; J-PARC/MLF
DOI10.1038/s41467-020-16913-2
Indexed BySCI
Language英语
Funding ProjectNational Science Foundation of China[11774223] ; National Science Foundation of China[U1732154] ; National Science Foundation of China[51761135127] ; Shanghai talent program ; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)[392228380] ; Alexander von Humboldt Foundation ; Natural Science Foundation of China[51761135127] ; Natural Science Foundation of China[11674211] ; 111 project[D16002] ; National Science Fund for Distinguished Young Scholars[51725102] ; J-PARC/MLF[2017A0071] ; J-PARC/MLF[2018B0281]
WOS Research AreaScience & Technology - Other Topics
WOS SubjectMultidisciplinary Sciences
WOS IDWOS:000545686200010
PublisherNATURE PUBLISHING GROUP
Citation statistics
Cited Times:9[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/139596
Collection中国科学院金属研究所
Corresponding AuthorFu, Chenguang; Yang, Jiong; Ma, Jie
Affiliation1.Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
2.Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
3.Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
4.Shanghai Univ, Mat Genome Inst, 99 Shangda Rd, Shanghai 200444, Peoples R China
5.Univ Tokyo, Inst Solid State Phys, Neutron Sci Lab, Kashiwa, Chiba 2778581, Japan
6.High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Tokai, Ibaraki 3191106, Japan
7.Sokendai, Dept Mat Struct Sci, Tokai, Ibaraki 3191106, Japan
8.Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
9.Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
10.Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
11.Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
12.Univ Missouri, Dept Chem, Columbia, MO 65211 USA
13.Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
14.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
Recommended Citation
GB/T 7714
Ren, Qingyong,Fu, Chenguang,Qiu, Qinyi,et al. Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials[J]. NATURE COMMUNICATIONS,2020,11(1):9.
APA Ren, Qingyong.,Fu, Chenguang.,Qiu, Qinyi.,Dai, Shengnan.,Liu, Zheyuan.,...&Ma, Jie.(2020).Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials.NATURE COMMUNICATIONS,11(1),9.
MLA Ren, Qingyong,et al."Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials".NATURE COMMUNICATIONS 11.1(2020):9.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Ren, Qingyong]'s Articles
[Fu, Chenguang]'s Articles
[Qiu, Qinyi]'s Articles
Baidu academic
Similar articles in Baidu academic
[Ren, Qingyong]'s Articles
[Fu, Chenguang]'s Articles
[Qiu, Qinyi]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Ren, Qingyong]'s Articles
[Fu, Chenguang]'s Articles
[Qiu, Qinyi]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.