Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials | |
Ren, Qingyong1; Fu, Chenguang2; Qiu, Qinyi3; Dai, Shengnan4; Liu, Zheyuan1; Masuda, Takatsugu5; Asai, Shinichiro5; Hagihala, Masato6; Lee, Sanghyun6; Torri, Shuki6; Kamiyama, Takashi6,7; He, Lunhua8,9,10; Tong, Xin10,11; Felser, Claudia2; Singh, David J.12,13; Zhu, Tiejun3; Yang, Jiong4; Ma, Jie1,14 | |
通讯作者 | Fu, Chenguang(Chenguang.Fu@cpfs.mpg.de) ; Yang, Jiong(jiongy@t.shu.edu.cn) ; Ma, Jie(jma3@sjtu.edu.cn) |
2020-06-19 | |
发表期刊 | NATURE COMMUNICATIONS
![]() |
ISSN | 2041-1723 |
卷号 | 11期号:1页码:9 |
摘要 | Chemical doping is one of the most important strategies for tuning electrical properties of semiconductors, particularly thermoelectric materials. Generally, the main role of chemical doping lies in optimizing the carrier concentration, but there can potentially be other important effects. Here, we show that chemical doping plays multiple roles for both electron and phonon transport properties in half-Heusler thermoelectric materials. With ZrNiSn-based half-Heusler materials as an example, we use high-quality single and polycrystalline crystals, various probes, including electrical transport measurements, inelastic neutron scattering measurement, and first-principles calculations, to investigate the underlying electron-phonon interaction. We find that chemical doping brings strong screening effects to ionized impurities, grain boundary, and polar optical phonon scattering, but has negligible influence on lattice thermal conductivity. Furthermore, it is possible to establish a carrier scattering phase diagram, which can be used to select reasonable strategies for optimization of the thermoelectric performance. Chemical doping plays an important role in tuning carrier concentration of materials, but its influence on other aspects of electrical properties is less known. Here, the authors find that chemical doping brings strong screening effects to ionized impurities, grain boundary, and polar optical phonon scattering. |
资助者 | National Science Foundation of China ; Shanghai talent program ; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) ; Alexander von Humboldt Foundation ; Natural Science Foundation of China ; 111 project ; National Science Fund for Distinguished Young Scholars ; J-PARC/MLF |
DOI | 10.1038/s41467-020-16913-2 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Science Foundation of China[11774223] ; National Science Foundation of China[U1732154] ; National Science Foundation of China[51761135127] ; Shanghai talent program ; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)[392228380] ; Alexander von Humboldt Foundation ; Natural Science Foundation of China[51761135127] ; Natural Science Foundation of China[11674211] ; 111 project[D16002] ; National Science Fund for Distinguished Young Scholars[51725102] ; J-PARC/MLF[2017A0071] ; J-PARC/MLF[2018B0281] |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000545686200010 |
出版者 | NATURE PUBLISHING GROUP |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/139596 |
专题 | 中国科学院金属研究所 |
通讯作者 | Fu, Chenguang; Yang, Jiong; Ma, Jie |
作者单位 | 1.Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, 800 Dongchuan Rd, Shanghai 200240, Peoples R China 2.Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany 3.Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China 4.Shanghai Univ, Mat Genome Inst, 99 Shangda Rd, Shanghai 200444, Peoples R China 5.Univ Tokyo, Inst Solid State Phys, Neutron Sci Lab, Kashiwa, Chiba 2778581, Japan 6.High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Tokai, Ibaraki 3191106, Japan 7.Sokendai, Dept Mat Struct Sci, Tokai, Ibaraki 3191106, Japan 8.Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China 9.Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China 10.Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China 11.Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China 12.Univ Missouri, Dept Chem, Columbia, MO 65211 USA 13.Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA 14.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China |
推荐引用方式 GB/T 7714 | Ren, Qingyong,Fu, Chenguang,Qiu, Qinyi,et al. Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials[J]. NATURE COMMUNICATIONS,2020,11(1):9. |
APA | Ren, Qingyong.,Fu, Chenguang.,Qiu, Qinyi.,Dai, Shengnan.,Liu, Zheyuan.,...&Ma, Jie.(2020).Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials.NATURE COMMUNICATIONS,11(1),9. |
MLA | Ren, Qingyong,et al."Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials".NATURE COMMUNICATIONS 11.1(2020):9. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论