IMR OpenIR
Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials
Ren, Qingyong1; Fu, Chenguang2; Qiu, Qinyi3; Dai, Shengnan4; Liu, Zheyuan1; Masuda, Takatsugu5; Asai, Shinichiro5; Hagihala, Masato6; Lee, Sanghyun6; Torri, Shuki6; Kamiyama, Takashi6,7; He, Lunhua8,9,10; Tong, Xin10,11; Felser, Claudia2; Singh, David J.12,13; Zhu, Tiejun3; Yang, Jiong4; Ma, Jie1,14
通讯作者Fu, Chenguang(Chenguang.Fu@cpfs.mpg.de) ; Yang, Jiong(jiongy@t.shu.edu.cn) ; Ma, Jie(jma3@sjtu.edu.cn)
2020-06-19
发表期刊NATURE COMMUNICATIONS
ISSN2041-1723
卷号11期号:1页码:9
摘要Chemical doping is one of the most important strategies for tuning electrical properties of semiconductors, particularly thermoelectric materials. Generally, the main role of chemical doping lies in optimizing the carrier concentration, but there can potentially be other important effects. Here, we show that chemical doping plays multiple roles for both electron and phonon transport properties in half-Heusler thermoelectric materials. With ZrNiSn-based half-Heusler materials as an example, we use high-quality single and polycrystalline crystals, various probes, including electrical transport measurements, inelastic neutron scattering measurement, and first-principles calculations, to investigate the underlying electron-phonon interaction. We find that chemical doping brings strong screening effects to ionized impurities, grain boundary, and polar optical phonon scattering, but has negligible influence on lattice thermal conductivity. Furthermore, it is possible to establish a carrier scattering phase diagram, which can be used to select reasonable strategies for optimization of the thermoelectric performance. Chemical doping plays an important role in tuning carrier concentration of materials, but its influence on other aspects of electrical properties is less known. Here, the authors find that chemical doping brings strong screening effects to ionized impurities, grain boundary, and polar optical phonon scattering.
资助者National Science Foundation of China ; Shanghai talent program ; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) ; Alexander von Humboldt Foundation ; Natural Science Foundation of China ; 111 project ; National Science Fund for Distinguished Young Scholars ; J-PARC/MLF
DOI10.1038/s41467-020-16913-2
收录类别SCI
语种英语
资助项目National Science Foundation of China[11774223] ; National Science Foundation of China[U1732154] ; National Science Foundation of China[51761135127] ; Shanghai talent program ; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)[392228380] ; Alexander von Humboldt Foundation ; Natural Science Foundation of China[51761135127] ; Natural Science Foundation of China[11674211] ; 111 project[D16002] ; National Science Fund for Distinguished Young Scholars[51725102] ; J-PARC/MLF[2017A0071] ; J-PARC/MLF[2018B0281]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000545686200010
出版者NATURE PUBLISHING GROUP
引用统计
被引频次:99[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/139596
专题中国科学院金属研究所
通讯作者Fu, Chenguang; Yang, Jiong; Ma, Jie
作者单位1.Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
2.Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
3.Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
4.Shanghai Univ, Mat Genome Inst, 99 Shangda Rd, Shanghai 200444, Peoples R China
5.Univ Tokyo, Inst Solid State Phys, Neutron Sci Lab, Kashiwa, Chiba 2778581, Japan
6.High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Tokai, Ibaraki 3191106, Japan
7.Sokendai, Dept Mat Struct Sci, Tokai, Ibaraki 3191106, Japan
8.Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
9.Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
10.Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
11.Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
12.Univ Missouri, Dept Chem, Columbia, MO 65211 USA
13.Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
14.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Ren, Qingyong,Fu, Chenguang,Qiu, Qinyi,et al. Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials[J]. NATURE COMMUNICATIONS,2020,11(1):9.
APA Ren, Qingyong.,Fu, Chenguang.,Qiu, Qinyi.,Dai, Shengnan.,Liu, Zheyuan.,...&Ma, Jie.(2020).Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials.NATURE COMMUNICATIONS,11(1),9.
MLA Ren, Qingyong,et al."Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials".NATURE COMMUNICATIONS 11.1(2020):9.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren, Qingyong]的文章
[Fu, Chenguang]的文章
[Qiu, Qinyi]的文章
百度学术
百度学术中相似的文章
[Ren, Qingyong]的文章
[Fu, Chenguang]的文章
[Qiu, Qinyi]的文章
必应学术
必应学术中相似的文章
[Ren, Qingyong]的文章
[Fu, Chenguang]的文章
[Qiu, Qinyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。