A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys | |
Song, Yan1,2; Jiang, Hongxiang1,2; Zhang, Lili1; Li, Shixin1,2; Zhao, Jiuzhou1,2; He, Jie1,2 | |
Corresponding Author | Zhao, Jiuzhou(jzzhao@imr.ac.cn) |
2020-10-31 | |
Source Publication | ACTA METALLURGICA SINICA-ENGLISH LETTERS
![]() |
ISSN | 1006-7191 |
Pages | 11 |
Abstract | A population dynamics-cellular automaton (PD-CA) model is developed to describe the microstructure formation in an inoculated Al alloys. The model involves the dynamics behaviors of the inoculated particles and the nucleation, initial spherical growth of nuclei as well as the subsequent dendritic growth. The model was validated by using the experimental results for the Al-Cu alloys inoculated by Al-Ti-C refiner first, and then used to simulate the detailed solidification process in an inoculated Al-Cu alloy. The results indicate that the TiC is not stable in Al melt. The heterogeneous nucleation process consists of two stages: a very short initial stage dominated by the cooling rate and the later stage dominated by the number of the active TiC. It stops at the very moment the recalescence occurs. The average grains size d of the aluminum alloys inoculated by the Al-Ti-C refiner can be calculated by d(mu m) = a.exp(t/cIn(C(o)w))/(v(0001).t)(1/3)w(1/3) + b.In t/Q.v(cool)(1/2) is the growth restriction factor, C-0 (%) is the initial solutes composition, w (%) is the additive amount of Al-Ti-C refiner. t (min) is the holding temperature time since the Al-Ti-C refiner is added into the melt. a and b are the constants. |
Keyword | Grain refinement Nucleation Dendritic growth Simulation Solidification |
Funding Organization | Chinese Academy of Sciences Strategic Priority Program on Space Science ; National Natural Science Foundation of China ; China's Manned Space Station Project ; Natural Science Foundation of Liaoning Province |
DOI | 10.1007/s40195-020-01154-5 |
Indexed By | SCI |
Language | 英语 |
Funding Project | Chinese Academy of Sciences Strategic Priority Program on Space Science[XDA15013800] ; National Natural Science Foundation of China[51771210] ; National Natural Science Foundation of China[51971227] ; National Natural Science Foundation of China[51901231] ; China's Manned Space Station Project[TGJZ800-2-RW024] ; Natural Science Foundation of Liaoning Province[2019-BS-253] |
WOS Research Area | Metallurgy & Metallurgical Engineering |
WOS Subject | Metallurgy & Metallurgical Engineering |
WOS ID | WOS:000583120000001 |
Publisher | CHINESE ACAD SCIENCES, INST METAL RESEARCH |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/141190 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Zhao, Jiuzhou |
Affiliation | 1.Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China |
Recommended Citation GB/T 7714 | Song, Yan,Jiang, Hongxiang,Zhang, Lili,et al. A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys[J]. ACTA METALLURGICA SINICA-ENGLISH LETTERS,2020:11. |
APA | Song, Yan,Jiang, Hongxiang,Zhang, Lili,Li, Shixin,Zhao, Jiuzhou,&He, Jie.(2020).A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys.ACTA METALLURGICA SINICA-ENGLISH LETTERS,11. |
MLA | Song, Yan,et al."A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys".ACTA METALLURGICA SINICA-ENGLISH LETTERS (2020):11. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment