IMR OpenIR
Seamlessly Splicing Metallic SnxMo1-xS2 at MoS2 Edge for Enhanced Photoelectrocatalytic Performance in Microreactor
Shao, Gonglei1; Lu, Yizhen2; Hong, Jinhua3; Xue, Xiong-Xiong4,5; Huang, Jinqiang6,7; Xu, Zheyuan8; Lu, Xiangchao2; Jin, Yuanyuan1; Liu, Xiao1; Li, Huimin1; Hu, Sheng; Suenaga, Kazu3; Han, Zheng6,7; Jiang, Ying9; Li, Shisheng10; Feng, Yexin4; Pan, Anlian8; Lin, Yung-Chang3; Cao, Yang2; Liu, Song1
Corresponding AuthorPan, Anlian(anlian.pan@hnu.edu.cn) ; Lin, Yung-Chang(yc-lin@aist.go.jp) ; Cao, Yang(yangcao@xmu.edu.cn) ; Liu, Song(liusong@hnu.edu.cn)
2020-11-16
Source PublicationADVANCED SCIENCE
Volume7Issue:24Pages:8
AbstractAccurate design of the 2D metal-semiconductor (M-S) heterostructure via the covalent combination of appropriate metallic and semiconducting materials is urgently needed for fabricating high-performance nanodevices and enhancing catalytic performance. Hence, the lateral epitaxial growth of M-S SnxMo1-xS2/MoS2 heterostructure is precisely prepared with in situ growth of metallic SnxMo1-xS2 by doping Sn atoms at semiconductor MoS2 edge via one-step chemical vapor deposition. The atomically sharp interface of this heterostructure exhibits clearly distinguished performance based on a series of characterizations. The oxygen evolution photoelectrocatalytic performance of the epitaxial M-S heterostructure is 2.5 times higher than that of pure MoS2 in microreactor, attributed to the efficient electron-hole separation and rapid charge transfer. This growth method provides a general strategy for fabricating seamless M-S lateral heterostructures by controllable doping heteroatoms. The M-S heterostructures show increased carrier migration rate and eliminated Fermi level pinning effect, contributing to their potential in devices and catalytic system.
Keywordchemical vapor deposition covalent bonds heteroatom doping metal– semiconductor heterostructures photoelectrocatalytic performance
Funding OrganizationNational Key R&D Program of China ; National Natural Science Foundation of China ; Natural Science Foundation of Hunan Province, China ; Fundamental Research Funds for the Central Universities from Hunan University ; JSPS-KAKENHI ; National Basic Research Programs of China
DOI10.1002/advs.202002172
Indexed BySCI
Language英语
Funding ProjectNational Key R&D Program of China[2018YFA0209500] ; National Key R&D Program of China[2018YFA0306900] ; National Natural Science Foundation of China[11974105] ; National Natural Science Foundation of China[21975067] ; National Natural Science Foundation of China[21705036] ; National Natural Science Foundation of China[21872114] ; National Natural Science Foundation of China[U19A2090] ; National Natural Science Foundation of China[51525202] ; Natural Science Foundation of Hunan Province, China[2018JJ3035] ; Fundamental Research Funds for the Central Universities from Hunan University ; JSPS-KAKENHI[JP16H06333] ; JSPS-KAKENHI[18K14119] ; National Basic Research Programs of China[2016YFA0300901]
WOS Research AreaChemistry ; Science & Technology - Other Topics ; Materials Science
WOS SubjectChemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS IDWOS:000590295000001
PublisherWILEY
Citation statistics
Cited Times:36[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/141357
Collection中国科学院金属研究所
Corresponding AuthorPan, Anlian; Lin, Yung-Chang; Cao, Yang; Liu, Song
Affiliation1.Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Inst Chem Biol & Nanomed ICBN, Changsha 410082, Peoples R China
2.Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat IChEM, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
3.Natl Inst Adv Ind Sci & Technol, Nanomat Res Inst, Tsukuba, Ibaraki 3058565, Japan
4.Hunan Univ, Sch Phys & Elect, Hunan Prov Key Lab Low Dimens Struct Phys & Devic, Changsha 410082, Peoples R China
5.Xiangtan Univ, Sch Phys & Optoelect, Xiangtan 411105, Peoples R China
6.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
7.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China
8.Hunan Univ, Coll Mat Sci & Engn, State Key Lab Chemo Biosensing & Chemometr, Key Lab Micronano Phys & Technol Hunan Prov, Changsha 410082, Peoples R China
9.Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China
10.Natl Inst Mat Sci NIMS, Int Ctr Young Scientists ICYS, Tsukuba, Ibaraki 3050044, Japan
Recommended Citation
GB/T 7714
Shao, Gonglei,Lu, Yizhen,Hong, Jinhua,et al. Seamlessly Splicing Metallic SnxMo1-xS2 at MoS2 Edge for Enhanced Photoelectrocatalytic Performance in Microreactor[J]. ADVANCED SCIENCE,2020,7(24):8.
APA Shao, Gonglei.,Lu, Yizhen.,Hong, Jinhua.,Xue, Xiong-Xiong.,Huang, Jinqiang.,...&Liu, Song.(2020).Seamlessly Splicing Metallic SnxMo1-xS2 at MoS2 Edge for Enhanced Photoelectrocatalytic Performance in Microreactor.ADVANCED SCIENCE,7(24),8.
MLA Shao, Gonglei,et al."Seamlessly Splicing Metallic SnxMo1-xS2 at MoS2 Edge for Enhanced Photoelectrocatalytic Performance in Microreactor".ADVANCED SCIENCE 7.24(2020):8.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Shao, Gonglei]'s Articles
[Lu, Yizhen]'s Articles
[Hong, Jinhua]'s Articles
Baidu academic
Similar articles in Baidu academic
[Shao, Gonglei]'s Articles
[Lu, Yizhen]'s Articles
[Hong, Jinhua]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Shao, Gonglei]'s Articles
[Lu, Yizhen]'s Articles
[Hong, Jinhua]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.