Classification-based self-adaptive differential evolution and its application in multi-lateral multi-issue negotiation | |
Alternative Title | Classification-based self-adaptive differential evolution and its application in multi-lateral multi-issue negotiation |
Bi Xiaojun1; Xiao Jing1 | |
2012 | |
Source Publication | FRONTIERS OF COMPUTER SCIENCE
![]() |
ISSN | 2095-2228 |
Volume | 6Issue:4Pages:442-461 |
Abstract | Multi-lateral multi-issue negotiations are the most complex realistic negotiation problems. Automated approaches have proven particularly promising for complex negotiations and previous research indicates evolutionary computation could be useful for such complex systems. To improve the efficiency of realistic multi-lateral multi-issue negotiations and avoid the requirement of complete information about negotiators, a novel negotiation model based on an improved evolutionary algorithm p-ADE is proposed. The new model includes a new multi-agent negotiation protocol and strategy which utilize p-ADE to improve the negotiation efficiency by generating more acceptable solutions with stronger suitability for all the participants. Where p-ADE is improved based on the well-known differential evolution (DE), in which a new classification-based mutation strategy DE/rand-to-best/pbest as well as a dynamic self-adaptive parameter setting strategy are proposed. Experimental results confirm the superiority of p-ADE over several state-of-the-art evolutionary optimizers. In addition, the p-ADE based multiagent negotiation model shows good performance in solving realistic multi-lateral multi-issue negotiations. |
Other Abstract | Multi-lateral multi-issue negotiations are the most complex realistic negotiation problems. Automated approaches have proven particularly promising for complex negotiations and previous research indicates evolutionary computation could be useful for such complex systems. To improve the efficiency of realistic multi-lateral multi-issue negotiations and avoid the requirement of complete information about negotiators, a novel negotiation model based on an improved evolutionary algorithm p-ADE is proposed. The new model includes a new multi-agent negotiation protocol and strategy which utilize p-ADE to improve the negotiation efficiency by generating more acceptable solutions with stronger suitability for all the participants. Where p-ADE is improved based on the well-known differential evolution (DE), in which a new classification-based mutation strategy DE/rand-to-best/pbest as well as a dynamic self-adaptive parameter setting strategy are proposed. Experimental results confirm the superiority of p-ADE over several state-of-the-art evolutionary optimizers. In addition, the p-ADE based multiagent negotiation model shows good performance in solving realistic multi-lateral multi-issue negotiations. |
Keyword | SUPPORT ALGORITHM SCHEME AGENTS SYSTEM differential evolution global optimum e-commerce agent multi-lateral multi-issue negotiation |
Indexed By | CSCD |
Language | 英语 |
Funding Project | [National Natural Science Foundation of China] |
CSCD ID | CSCD:4636353 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/154244 |
Collection | 中国科学院金属研究所 |
Affiliation | 1.Harbin Engn University, Sch Informat & Commun Engn, Harbin 150001, Peoples R China 2.中国科学院金属研究所 |
Recommended Citation GB/T 7714 | Bi Xiaojun,Xiao Jing. Classification-based self-adaptive differential evolution and its application in multi-lateral multi-issue negotiation[J]. FRONTIERS OF COMPUTER SCIENCE,2012,6(4):442-461. |
APA | Bi Xiaojun,&Xiao Jing.(2012).Classification-based self-adaptive differential evolution and its application in multi-lateral multi-issue negotiation.FRONTIERS OF COMPUTER SCIENCE,6(4),442-461. |
MLA | Bi Xiaojun,et al."Classification-based self-adaptive differential evolution and its application in multi-lateral multi-issue negotiation".FRONTIERS OF COMPUTER SCIENCE 6.4(2012):442-461. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment