IMR OpenIR
Three-Phase Microstructure Topology Optimization of Two-Dimensional Phononic Bandgap Materials Using Genetic Algorithms
其他题名Three-Phase Microstructure Topology Optimization of Two-Dimensional Phononic Bandgap Materials Using Genetic Algorithms
Xu Weikai1; Ning Jinying1; Zhang Meng1; Wang Wei2; Yang Tianzhi3
2018
发表期刊ACTA MECHANICA SOLIDA SINICA
ISSN0894-9166
卷号31期号:6页码:775-784
摘要The bandgap, an important characteristic of the periodic structure, is dispersion-related, which can be designed by tailoring the layout of materials within the periodic microstructures. A typical example of a periodic structure is phononic crystals (PnCs), which are traditionally fabricated from two-phase materials. Herein, we investigate the topologies of periodic three-phase PnCs. The microstructures of the three-phase PnCs are optimized using a two-stage genetic algorithm, and three case studies are proposed to obtain the following: (1) the maximum relative bandgap width, (2) the maximum absolute bandgap width, and (3) the maximum bandgap at a specified frequency. More importantly, the three-phase material provides significant advantages compared to the typical two-phase materials, such as a low-frequency bandgap. This research is expected to contribute highly to vibration and noise isolation, elastic wave filters, and acoustic devices.
其他摘要The bandgap, an important characteristic of the periodic structure, is dispersionrelated, which can be designed by tailoring the layout of materials within the periodic microstructures. A typical example of a periodic structure is phononic crystals(PnCs), which are traditionally fabricated from two-phase materials. Herein, we investigate the topologies of periodic three-phase PnCs. The microstructures of the three-phase PnCs are optimized using a two-stage genetic algorithm, and three case studies are proposed to obtain the following:(1) the maximum relative bandgap width,(2) the maximum absolute bandgap width, and(3) the maximum bandgap at a specified frequency. More importantly, the three-phase material provides significant advantages compared to the typical two-phase materials, such as a low-frequency bandgap. This research is expected to contribute highly to vibration and noise isolation, elastic wave filters, and acoustic devices.
关键词DISPERSIVE ELASTODYNAMICS BANDED MATERIALS DESIGN CRYSTALS GAPS 1D Phononic bandgap materials Multiphase microstructures Topology optimization
收录类别CSCD
语种英语
资助项目[National Natural Science Foundation of China] ; [Natural Science Foundation of Liaoning Province] ; [Program for Liaoning Excellent Talents in University (LNET)]
CSCD记录号CSCD:6403560
引用统计
被引频次:3[CSCD]   [CSCD记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/158039
专题中国科学院金属研究所
作者单位1.中国科学院金属研究所
2.沈阳建筑大学
3.天津大学
推荐引用方式
GB/T 7714
Xu Weikai,Ning Jinying,Zhang Meng,et al. Three-Phase Microstructure Topology Optimization of Two-Dimensional Phononic Bandgap Materials Using Genetic Algorithms[J]. ACTA MECHANICA SOLIDA SINICA,2018,31(6):775-784.
APA Xu Weikai,Ning Jinying,Zhang Meng,Wang Wei,&Yang Tianzhi.(2018).Three-Phase Microstructure Topology Optimization of Two-Dimensional Phononic Bandgap Materials Using Genetic Algorithms.ACTA MECHANICA SOLIDA SINICA,31(6),775-784.
MLA Xu Weikai,et al."Three-Phase Microstructure Topology Optimization of Two-Dimensional Phononic Bandgap Materials Using Genetic Algorithms".ACTA MECHANICA SOLIDA SINICA 31.6(2018):775-784.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu Weikai]的文章
[Ning Jinying]的文章
[Zhang Meng]的文章
百度学术
百度学术中相似的文章
[Xu Weikai]的文章
[Ning Jinying]的文章
[Zhang Meng]的文章
必应学术
必应学术中相似的文章
[Xu Weikai]的文章
[Ning Jinying]的文章
[Zhang Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。