Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media | |
Luo, Yuting1,2; Zhang, Zhiyuan1,2; Yang, Fengning1,2; Li, Jiong3; Liu, Zhibo4; Ren, Wencai4; Zhang, Shuo3; Liu, Bilu1,2 | |
Corresponding Author | Zhang, Shuo(zhangshuo@sinap.ac.cn) ; Liu, Bilu(bilu.liu@sz.tsinghua.edu.cn) |
2021-07-06 | |
Source Publication | ENERGY & ENVIRONMENTAL SCIENCE
![]() |
ISSN | 1754-5692 |
Pages | 10 |
Abstract | Large-scale production of green hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious nickel-based catalysts work well at low current densities, they need large overpotentials at high current densities, which hinders their wide applications in practical industry. Here we report a hydroxide-mediated nickel-based electrocatalyst for high-current-density hydrogen evolution, which delivers a current density of 1000 mA cm(-2) at an ultralow overpotential of 97 mV. Combined X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) results show charge redistribution of Ni sites caused by Mo and surface Fe, which can stabilize the surface nickel hydroxide at high current densities for promoting the water dissociation step. Combined in situ XAS, quasi in situ XPS, and density functional theory calculations indicate that Fe plays an important role in the improved catalytic activity. Such a catalyst is synthesized at the metre-size scale and delivers a current density of 500 mA cm(-2) at 1.56 V in overall water splitting, demonstrating its potential for practical use. This work highlights a charge engineering strategy to design efficient catalysts for high current density electrochemical applications. |
Funding Organization | National Natural Science Foundation of China ; Guangdong Innovative and Entrepreneurial Research Team Program ; Bureau of Industry and Information Technology of Shenzhen ; Shenzhen Basic Research Project ; Youth 1000-Talent Program of China |
DOI | 10.1039/d1ee01487k |
Indexed By | SCI |
Language | 英语 |
Funding Project | National Natural Science Foundation of China[51722206] ; National Natural Science Foundation of China[51920105002] ; Guangdong Innovative and Entrepreneurial Research Team Program[2017ZT07C341] ; Bureau of Industry and Information Technology of Shenzhen[201901171523] ; Shenzhen Basic Research Project[JCYJ20200109144620815] ; Youth 1000-Talent Program of China |
WOS Research Area | Chemistry ; Energy & Fuels ; Engineering ; Environmental Sciences & Ecology |
WOS Subject | Chemistry, Multidisciplinary ; Energy & Fuels ; Engineering, Chemical ; Environmental Sciences |
WOS ID | WOS:000678047600001 |
Publisher | ROYAL SOC CHEMISTRY |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/159671 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Zhang, Shuo; Liu, Bilu |
Affiliation | 1.Tsinghua Univ, Shenzhen Geim Graphene Ctr, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Peoples R China 2.Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Inst Mat Res, Shenzhen 518055, Peoples R China 3.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201210, Peoples R China 4.Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China |
Recommended Citation GB/T 7714 | Luo, Yuting,Zhang, Zhiyuan,Yang, Fengning,et al. Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media[J]. ENERGY & ENVIRONMENTAL SCIENCE,2021:10. |
APA | Luo, Yuting.,Zhang, Zhiyuan.,Yang, Fengning.,Li, Jiong.,Liu, Zhibo.,...&Liu, Bilu.(2021).Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media.ENERGY & ENVIRONMENTAL SCIENCE,10. |
MLA | Luo, Yuting,et al."Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media".ENERGY & ENVIRONMENTAL SCIENCE (2021):10. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment