IMR OpenIR
Catalytic combustion of volatile organic compounds (VOCs) over structured Co3O4 nano-flowers on silicalite-1/SiC foam catalysts
Guan, Yanan1,2; Zhou, Yangtao1; Jiang, Chunhai3,4; Xu, Xingxiang1; Yang, Zhenming1; Zhang, Jinsong1; Fan, Xiaolei5; Jiao, Yilai1
Corresponding AuthorZhang, Jinsong(jszhang@imr.ac.cn) ; Fan, Xiaolei(xiaolei.fan@manchester.ac.uk) ; Jiao, Yilai(yljiao@imr.ac.cn)
2021-08-01
Source PublicationMICROPOROUS AND MESOPOROUS MATERIALS
ISSN1387-1811
Volume323Pages:12
AbstractThis work presents a simple method for the preparation of structured Co3O4 supported on silicalite-1/SiC foam catalyst (i.e., Co@S1/SiC), and its application to catalytic combustion of volatile organic compounds (VOCs, isopropanol as the model compound). The growth mechanism of Co3O4 on silicalite-1/SiC catalysts were systematically studied as a function of synthesis time based on comprehensive characterization using N2 adsorptiondesorption analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), H2 temperature programmed reduction (H2-TPR) and X-ray photoelectron spectra (XPS). It was found that Co2SiO4 nano-sheets were formed within/on silicalite-1 coating at the initial stage of synthesis, which was further transformed into flower-like Co3O4 nano crystals on the surface of silicalite-1/SiC. The developed structured catalyst, especially the one prepared by the 40 h synthesis, i.e., Co@S1/SiC-40 h, combined high oxygen mobility, Co3+/Co2+ redox couple and improved adsorbed oxygen species, and exhibited excellent performance in complete thermocatalytic combustion of isopropanol.
KeywordCatalytic combustion Structured catalysts Isopropanol SiC foam Silicalite-1 Co3O4
Funding OrganizationNational Natural Science Foundation of China ; Key Project on Intergovernmental International Science, Technology and Innovation (STI) Cooperation/STI Cooperation with Hong Kong, Macao and Taiwan of China's National Key RD Programme ; European Union
DOI10.1016/j.micromeso.2021.111173
Indexed BySCI
Languageen
Funding ProjectNational Natural Science Foundation of China[22078348] ; Key Project on Intergovernmental International Science, Technology and Innovation (STI) Cooperation/STI Cooperation with Hong Kong, Macao and Taiwan of China's National Key RD Programme[2019YFE0123200] ; European Union[872102]
WOS Research AreaChemistry ; Science & Technology - Other Topics ; Materials Science
WOS SubjectChemistry, Applied ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS IDWOS:000672813000003
PublisherELSEVIER
Citation statistics
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/159817
Collection中国科学院金属研究所
Corresponding AuthorZhang, Jinsong; Fan, Xiaolei; Jiao, Yilai
Affiliation1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, 72 Wenhua Rd, Shenyang 110016, Peoples R China
3.Xiamen Univ Technol, Sch Mat Sci & Engn, Inst Adv Energy Mat, 600 Ligong Rd, Xiamen 361024, Peoples R China
4.Key Lab Funct Mat & Applicat Fujian Prov, 600 Ligong Rd, Xiamen 361024, Peoples R China
5.Univ Manchester, Sch Engn, Dept Chem Engn & Analyt Sci, Manchester M13 9PL, Lancs, England
Recommended Citation
GB/T 7714
Guan, Yanan,Zhou, Yangtao,Jiang, Chunhai,et al. Catalytic combustion of volatile organic compounds (VOCs) over structured Co3O4 nano-flowers on silicalite-1/SiC foam catalysts[J]. MICROPOROUS AND MESOPOROUS MATERIALS,2021,323:12.
APA Guan, Yanan.,Zhou, Yangtao.,Jiang, Chunhai.,Xu, Xingxiang.,Yang, Zhenming.,...&Jiao, Yilai.(2021).Catalytic combustion of volatile organic compounds (VOCs) over structured Co3O4 nano-flowers on silicalite-1/SiC foam catalysts.MICROPOROUS AND MESOPOROUS MATERIALS,323,12.
MLA Guan, Yanan,et al."Catalytic combustion of volatile organic compounds (VOCs) over structured Co3O4 nano-flowers on silicalite-1/SiC foam catalysts".MICROPOROUS AND MESOPOROUS MATERIALS 323(2021):12.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Guan, Yanan]'s Articles
[Zhou, Yangtao]'s Articles
[Jiang, Chunhai]'s Articles
Baidu academic
Similar articles in Baidu academic
[Guan, Yanan]'s Articles
[Zhou, Yangtao]'s Articles
[Jiang, Chunhai]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Guan, Yanan]'s Articles
[Zhou, Yangtao]'s Articles
[Jiang, Chunhai]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.