High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes | |
Ji, Zhong-Hai1,2; Zhang, Lili1; Tang, Dai-Ming3; Chen, Chien-Ming4; Nordling, Torbjorn E. M.4,5; Zhang, Zheng-De6; Ren, Cui-Lan6; Da, Bo7; Li, Xin1,2; Guo, Shu-Yu1; Liu, Chang1; Cheng, Hui-Ming1,8 | |
通讯作者 | Tang, Dai-Ming(tang.daiming@nims.go.jp) ; Liu, Chang(cliu@imr.ac.cn) |
2021-03-18 | |
发表期刊 | NANO RESEARCH
![]() |
ISSN | 1998-0124 |
页码 | 6 |
摘要 | It has been a great challenge to optimize the growth conditions toward structure-controlled growth of single-wall carbon nanotubes (SWCNTs). Hem, a high-throughput method combined with machine leaming is reported that efficiently screens the growth conditions for the synthesis of high-quality SWCNTs. Patterned cobalt (Co) nanoparticles were deposited on a numerically marked silicon wafer as catalysts, and parameters of temperature, reduction time and carbon precursor were optimized. The crystallinity of the SWCNTs was characterized by Raman spectroscopy where the featured G/D peak intensity (I-G/I-D) was extracted automatically and mapped to the growth parameters to build a database. 1,280 data were collected to train machine learning models. Random forest regression (RFR) showed high precision in predicting the growth conditions for high-quality SWCNTs, as validated by further chemical vapor deposition (CVD) growth. This method shows great potential in structure-controlled growth of SWCNTs. |
关键词 | single-wall carbon nanotube high throughput machine learning optimization chemical vapor deposition |
资助者 | National Key Research and Development Program of China ; National Natural Science Foundation of China ; JSPS KAKENHI |
DOI | 10.1007/s12274-021-3387-y |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2016YFA0200101] ; National Natural Science Foundation of China[51522210] ; National Natural Science Foundation of China[51972311] ; National Natural Science Foundation of China[51625203] ; National Natural Science Foundation of China[51532008] ; National Natural Science Foundation of China[51761135122] ; National Natural Science Foundation of China[52001322] ; JSPS KAKENHI[JP20K05281] ; JSPS KAKENHI[JP25820336] ; [MOST 108-2634-F-006-009] ; [MOST 109-2224-E-006-003] |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics |
WOS类目 | Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied |
WOS记录号 | WOS:000630681600001 |
出版者 | TSINGHUA UNIV PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/161423 |
专题 | 中国科学院金属研究所 |
通讯作者 | Tang, Dai-Ming; Liu, Chang |
作者单位 | 1.Chinese Acad Sci, Inst Met Res IMR, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China 3.Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan 4.Natl Cheng Kung Univ, Dept Mech Engn, 1 Univ Rd, Tainan 701, Taiwan 5.Umea Univ, Dept Appl Phys & Elect, S-90187 Umea, Sweden 6.Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China 7.Natl Inst Mat Sci NIMS, Res & Serv Div Mat Data & Integrated Syst, Ibaraki 3050047, Japan 8.Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst TBSI, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 | Ji, Zhong-Hai,Zhang, Lili,Tang, Dai-Ming,et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes[J]. NANO RESEARCH,2021:6. |
APA | Ji, Zhong-Hai.,Zhang, Lili.,Tang, Dai-Ming.,Chen, Chien-Ming.,Nordling, Torbjorn E. M..,...&Cheng, Hui-Ming.(2021).High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes.NANO RESEARCH,6. |
MLA | Ji, Zhong-Hai,et al."High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes".NANO RESEARCH (2021):6. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论