IMR OpenIR
新型Cu-Ni-Cr纳米复合镀层的制备及氧化性能研究
其他题名Preparation and Oxidation Properties of Novel Cu-Ni-Cr Nanocomposite Coatings
黄忠平
学位类型博士
导师王福会
2006-11-01
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词纳米复合电镀 Cu-ni-cr纳米复合镀层 高温氧化 纳米晶 硬度
摘要Cu基合金具有很好的导电、导热性。但是,较差抗高温腐蚀性能限制其广泛应用。通常加入Cr可以提高合金抗高温腐蚀性。对于Cu及Cu基合金由于Cr在Cu中的溶解度和扩散速率很低,因而即使加入较高的Cr含量,也难以形成连续的Cr2O3氧化膜。本论文根据晶粒细化可以促进金属扩散的原理,采用纳米复合电镀(NCE)的方法制备了新型Cu-Ni-Cr纳米复合镀层,并对其组成结构和氧化性能进行了研究。 Cu-Ni-Cr纳米复合镀层,从添加Cr纳米颗粒的柠檬酸钠镀液中制取,它由纳米晶Cu-Ni固溶体基体和弥散分布的Cr纳米颗粒组成,其化学组成可通过改变镀液中的CuSO4∙5H2O浓度和Cr纳米颗粒含量来调节。 800oC空气中的氧化实验获得如下结果: (1)Cr含量对Cu-Ni-Cr纳米复合镀层的影响。Cu-50Ni合金镀层的氧化速率非常快,其氧化层由CuO,Cu2O和NiO组成。而复合15 wt. % Cr的Cu-Ni-Cr纳米复合镀层(Cu与Ni含量之比为1),能形成一层连续的Cr2O3外氧化膜,导致氧化速率迅速降低,并且氧化速率随Cr含量增加而进一步降低。 (2)与相同成分电弧熔炼(AM)的Cu-Ni-Cr合金比较。富Cu的Cu-30Ni-20Cr合金是由富Cu的α相、富Ni和相对富Cr的β相和少量富Cr的γ相组成。氧化时,Cr在Cu中的溶解度很低而且三相存在热力学平衡,导致Cr2O3外氧化膜很难形成。其典型氧化膜具有三层结构,外层为很厚的CuO,中间层为Cu、Ni和Cr的混合氧化物层,内层是围绕β相形成的Cr2O3。富 Ni的Ni-30Cu-20Cr合金主要是由β相组成,并有少量的α相。氧化时β相上能迅速生长Cr2O3,并且其沿CuO/α相界面生长形成连续的氧化层,导致氧化速率明显降低。富Cu的Cu-30Ni-20Cr纳米复合镀层的氧化速率和富Ni合金的相似,均能形成一层连续的Cr2O3外氧化膜。纳米复合镀层能形成单一的Cr2O3膜,其原因在于其独特的结构能促使连续Cr2O3层快速形成,其氧化过程可描述如下:氧化时,Cr2O3在表面弥散分布的大量Cr纳米颗粒以及部分纳米晶Cu-Ni固溶体基体晶界上快速形核。同时,纳米颗粒溶解产生的Cr沿Cu-Ni基的纳米晶晶界向氧化前沿快速扩散,促使Cr2O3核快速横向生长形成连续的氧化膜。与富Cu的纳米复合镀层相比,Cr在富Ni镀层的扩散速率更快,连续Cr2O3膜形成所需的时间更短,保护性能更佳。 (3)与磁控溅射(MS)和表面机械研磨(SMAT)制备的Cu-30Ni-20Cr纳米晶相比较。MS和SMAT制备的纳米晶都能形成连续的Cr2O3氧化膜。但是,MS Cu-30Ni-20Cr氧化时其柱状晶之间形成了内生的Cr2O3。而SMAT Cu-30Ni-20Cr局部区域(α相)仍优先生长CuO。与此相比,NCE Cu-30Ni-20Cr氧化时形成一层单一的,薄而均匀的Cr2O3外氧化膜。说明纳米复合镀层的结构更有利于迅速形成连续、致密的Cr2O3。 另外,对纳米复合镀层的硬度和弹性模量进行了测量。维氏硬度实验和纳米压痕的实验结果表明:Cu-50Ni合金镀层的硬度与成分相同的AM合金相比有大幅度提高,复合Cr纳米颗粒后硬度进一步增加。NCE Cu-30Ni-20Cr的硬度和相同成分的AM合金相比,也大幅度提高。Cu-Ni-Cr纳米复合镀层具有较高的硬度是由于晶粒细化强化和Cr颗粒弥散强化的共同作用。NCE Cu-30Ni-20Cr的弹性模量与AM Cu-30Ni-20Cr相比变化不大,而且压痕形状规则,表明纳米复合镀层结构致密、Cr颗粒分布均匀。MS Cu-30Ni-20Cr纳米晶的硬度虽然与NCE Cu-30Ni-20Cr相差不大,但是压痕形状不规则,弹性模量较小,这是由于其柱状晶结构以及晶间孔隙的存在。
其他摘要Copper or Cu-based alloys have excellent electrical and thermal conductivity. However, the poor oxidation performance of these materials limits their widespread use at elevated temperature. Adding Cr is expected to improve the oxidation resistance of Cu-based alloys since chromia scale is dense, slow-growing and thermodynamically stable. Unfortunately, Cr is almost insoluble in Cu, and its diffusion rate in Cu is extremely low. This leads to that a protective chromia scale is difficult to grow on the alloys even though they contain a rather high content of Cr. However, alloy grain refinement is an alternative to promote selective oxidation of Cr to form a protective layer. In this work, novel Cu-Ni-Cr nanocomposite coatings were prepared by nano-composite electrodeposition, and their microstructures and oxidation properties were investigated. Cu-Ni-Cr nanocomposite coatings were electrodeposited from a sodium citrate bath with the addition of Cr nanoparticles. The composition of the coatings can be adjusted by changing the contents of CuSO4∙5H2O and Cr nanopartices in the bath. The Cu-Ni-Cr nanocomposite coatings were composed of nanocrystalline Cu-Ni alloy matrix with Cr nanoparticles. The oxidation behaviors of the Cu-Ni-Cr nanocomposite coatings at 800oC in air were examined. The main results are presented as follows: (1) Effect of the content of Cr on the oxidation behavior of Cu-Ni-Cr nanocomposite coatings. The electrodeposited Cu-50Ni alloy coating oxidized very fast and formed very thick oxide scales, consisting of CuO, Cu2O and NiO. The Cu-Ni-Cr nanocomposite coatings (weight percentage ratio of Cu/Ni 1) containing 15 wt. % Cr exhibited a rather low oxidation rate as compared with the Cu-50Ni alloy coating, because of the formation of a continuous Cr2O3 scale. The reduction of oxidation rate of the nanocomposite coatings was more significantly when the content of codeposited Cr further increased. (2) Oxidation comparison of the Cu-Ni-Cr nanocomposite coatings and the Cu-Ni-Cr alloys prepared by arc melting (AM). The Cu-30Ni-20Cr alloy prepared by arc melting was composed of Cu-rich  phase, Ni-rich  phase and a small amount of Cr-rich  phase. Cu-30Ni-20Cr alloy formed a triple-layer scale, which included a thick CuO layer on the outside, followed by a mixture layer of Cu and Ni oxides and NiCr2O4, then a thin Cr2O3 scale layer around the  phase. The AM Ni-30Cu-20Cr alloy consisted of the  phase and a little  phase. During the oxidation, Cr2O3 scale quickly formed on the  phase, and then laterally grew along the interface between CuO and  phase. Finally, a continuous Cr2O3 layer formed, which significantly decreased the oxidation rate of the Ni-30Cu-20Cr alloy. The results demonstrate that the  phase, which has high content of Ni and Cr, increased the diffusion of Cr from the bulk alloy to the oxidation front and consequently the formation of a protective Cr2O3 layer. For the Cu-30Ni-20Cr nanocomposite coating exhibited a low oxidation rate similar to the Ni-30Cu-20Cr alloy, because the exclusive formation of external Cr2O3 scale. The latter is due to the unique microstructure of the nanocomposite coating, from onset of oxidation, chromia easily nucleated on both chromium nanoparticles and abundant Cu-Ni grain boundaries. Then, the chromia nuclei could be fast linked together as a result of their fast lateral growth through the diffusion of Cr along the grain boundaries. The Ni-30Cu-20Cr nanocomposite coating has a slightly reduced oxidation rate compared to the Cu-30Ni-20Cr nanocomposite coating, because the continuous Cr2O3 scale on the former could form more quickly. (3) Oxidation comparison of the Cu-30Ni-20Cr nanocomposite and the Cu-30Ni-20Cr nanocrystalline alloys prepared by magnetron sputtering (MS) or surface mechanical attrition treatment (SMAT). Continuous Cr2O3 scale could also form on the MS/SMAT Cu-30Ni-20Cr. However, the inward growth of Cr2O3 along the boundaries of the columnar grains (normal to the gas/scale interface) in the MS Cu-30Ni-20Cr was seen. For the SMAT Cu-30Ni-20Cr, a thick CuO scale also formed on the  phase. By contrast, external Cr2O3 scale could exclusively form on the Cu-30Ni-20Cr nanocomposite coating. These results indicate that the nanocomposite coating exhibited a superior oxidation resistance. In addition, the hardness and Young’s modulus of electrodeposeited Cu-Ni based coatings and the alloys were respectively examined using Hv hardness test and nanoindentation method. The electrodeposited Cu-50Ni alloy coating exhibited a much higher Hv hardness than the Cu-50Ni alloy. Codeposition of the Cr nanoparticles further increased the hardness of Cu-Ni alloy coating. Nanoindentation tests showed that the hardness of Cu-30Ni-20Cr nanocomposite coating was greatly enhanced as compared with that of the AM Cu-30Ni-20Cr alloy, but the value was much similar to that of the MS Cu-30Ni-20Cr nanocrystalline coating. The Cu-Ni-Cr nanocomposite coating had a high hardness due to that it was strengthened by the fined-grained structure and the dispersion of Cr nanoparticles. The Cu-30Ni-20Cr nanocomposite coating exhibited the same Young’s modulus as the AM Cu-30Ni-20Cr. However, the MS Cu-30Ni-20Cr had a low Young’s modulus mainly resulted from the structural heterogeneity in the density and grain size.
页数105
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16937
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
黄忠平. 新型Cu-Ni-Cr纳米复合镀层的制备及氧化性能研究[D]. 金属研究所. 中国科学院金属研究所,2006.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[黄忠平]的文章
百度学术
百度学术中相似的文章
[黄忠平]的文章
必应学术
必应学术中相似的文章
[黄忠平]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。