IMR OpenIR
镍基纳米复合膜的渗氮及渗铬研究
其他题名Nitriding and Chromizing of Novel Electrodeposited Ni-based Nanocomposites
赵敬棋
学位类型博士
导师王福会
2007-04-25
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词纳米复合膜 离子氮化 渗cr 硬度 抗氧化性能
摘要采用复合电镀技术,制备出不同的纳米复合膜,它由纳米晶Ni基体及弥散分布于其中的不同纳米颗粒(包括Cr、Al2O3或CeO2)组成。利用差示扫描量热计(DSC)研究了Ni-Cr纳米复合膜的热稳定性。用X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、电子探针(EPMA)等技术,研究了Ni-Cr纳米复合膜的离子渗氮行为以及Ni-Al2O3和Ni-CeO2纳米复合膜渗Cr层的微观结构和氧化行为。得出以下主要结果: 1. Ni-Cr纳米复合膜热稳定性: Ni-10.9 mass%Cr纳米复合膜(基体Ni的平均晶粒为60 nm)在10 K/min的恒速升温过程中晶粒长大温度为550 oC。TEM分析表明,在570 oC时,基体纳米晶Ni的局部区域出现非正常晶粒长大现象,即晶粒不均匀不连续地长大,这与纳米Cr颗粒在基体Ni中局部分布不均有关;与此同时伴随着纳米Cr颗粒溶解的现象,当温度升到590 oC时,Ni的平均晶粒尺度达到220 nm,610 oC时,Ni的平均晶粒尺寸长大到300 nm左右。 2. Ni-Cr纳米复合膜的离子渗氮行为: Ni-10.8 mass%Cr 纳米复合膜经560 oC离子氮化10小时后,形成大约为55 m的氮化层,且分为两层:外氮化层约为50 m厚,细小的CrN颗粒弥散分布在纳米晶Ni基体中,而且随着深度增加,CrN颗粒变大而数量减少(符合Böhm-Kahlweit’s模型);内层是5 m厚的几乎连续的CrN层。与成分相近的铸态Ni-10 mass%Cr合金(平均晶粒度为30m)相比,纳米复合膜内的渗氮动力学提高,这是由于纳米晶中丰富的晶界充当了氮向内扩散的快速“通道”,提高了氮的渗透率。硬度测试表明,外层硬度随深度增加而下降,即从表面的7.5 GPa下降到6 GPa(距离表面50 m深);内层硬度达到了12 GPa。 随着Ni-Cr纳米复合膜中Cr含量的升高,连续CrN层的形成位置向表面移动,即复合膜由“内氮化”向“外氮化”的转变能力增强,当Cr含量达到30 mass%时,在表面形成一层连续的CrN。因此,通过调整Ni-Cr纳米复合膜的Cr含量,可获得结构和性能不同的氮化层。 3. Ni-Al2O3 和Ni-CeO2纳米复合膜渗Cr层结构和氧化性能比较: 在1120 oC下渗Cr 4小时后,与镀Ni渗Cr层比较,Ni-Al2O3纳米复合膜的渗Cr层晶粒细化,但其900 oC的抗氧化性能并没有本质性地提高。而Ni-CeO2纳米复合膜渗Cr后,渗Cr层不仅晶粒细化,其900 oC的抗氧化能力得到了极大提高,这和CeO2起“活性元素效应”而提高热生长Cr2O3膜的抗氧化性能有关。
其他摘要Novel Ni-based nanocomposites, consisting of nanocrystalline Ni matrix and different dispersed nanoparticles (Cr, Al2O3 or CeO2 particles), have been synthesized by electrodeposition. The thermal stability of a Ni-Cr nanocomposite, the plasma nitridation of Ni-Cr nanocomposites with various contents of codeposited Cr nanoparticles, as well as, the pack chromization of Ni-Al2O3 and Ni-CeO2 nanocomposites were investigated by differential scanning calorimetry (DSC), scanning electron microscopy with an energy-dispersive X-ray analysis (SEM/EDX), electron probe microanalysis (EPMA), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The main results are presented below: 1. Thermal stability of Ni-Cr nanocomposite: During linear heating at a rate of 10K/min in the DSC system used, significant coarsening of the nanocrystalline Ni matrix (mean grain size: 60 nm) of Ni-10.9 mass%Cr did not occur before 550 oC. But at 570 oC, TEM investigation showed that abnormal grain growth of Ni nanocrystals occurred in the particle-free area due to the nonuniform distribution of Cr nanoparticles; meanwhile, significant solid solution of Cr nanoparticles was also observed at the temperature. Thereafter, the mean grain size of Ni(Cr) matrix was coarsened to ~220 nm at 590 oC and to ~300 nm at 610 oC. 2. Plasma nitridation of Ni-Cr nanocomposite: A double-layered nitriding zone was formed on the Ni-10.8 mass%Cr nanocomposite after plasma nitridation at 560 oC for 10 h. The outer layer (~50 m thick) precipitated nanometer-sized CrN (<100 nm), which increased in size but decreased the number with increasing the nitridation depth (following Böhm-Kahlweit’s mode). The inner layer (~5 m thick) exhibited larger-coarsened nitride precipitates (100-200 nm) which almost linked each other. However, a compositionally-similar but microstructurally different Ni-10Cr alloy (mean grain size: 30 m) only achieved a 5 m-thick nitriding layer in the same condition. The greatly enhancement of nitriding kinetics of the nanocomposite is mainly associated with that the numerous grain boundaries dramatically increases the nitrogen permeability, according to the treatment using a classical Wagner’s approach. This outer nitrided layer having the typical structure yielded a nanohardness profile with a decrease gradient from ~ 7.5 GPa in the near-surface area to ~ 6.0 GPa in the innermost area. The inner nitrided layer has the maximum hardness of ~12.0 GPa, because the layer is almost composed of larger-coarsened nitride precipitates. With increasing the content of the codeposited Cr nanoparticles, the continuous CrN inner layer was shifted to a place closer to the surface. It means that higher Cr content favors the transition of the nitridation of the nanocomposite from “internal” to external”. When the Cr content was 30 mass%, external nitridation of the nanocomposite occurred. The result demonstrates that the nitrided layers with different microstructures and properties can be achieved by adjusting the Cr content of the Ni-Cr nanocomposite. 3. Oxidation behavior of chromized Ni-Al2O3 and Ni-CeO2 nanocomposites: The electrodeposited Ni-Al2O3 and Ni-CeO2 nanocomposites were chromized at 1120 oC for 4 hours. It was found that the oxidation resistance at 900 oC of the chromized coating on the Ni-Al2O3 nanocomposite, although it had a fine-grained structure, was not improved intrinsically compared to that of the chromized coating on the electrodeposited Ni. In contrast, the oxidation resistance of the fine-grained chromized coating on the Ni-CeO2 nanocomposite with respect to that on the Ni was significantly increased. The result confirms that the added CeO2 exerted a so-called reactive element effect (REE) during oxidation.
页数96
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16954
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
赵敬棋. 镍基纳米复合膜的渗氮及渗铬研究[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[赵敬棋]的文章
百度学术
百度学术中相似的文章
[赵敬棋]的文章
必应学术
必应学术中相似的文章
[赵敬棋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。