IMR OpenIR
钛铝合金形变显微结构研究
其他题名TEM Study of the Deformation Microstructure of TiAl alloys
陈春林
学位类型博士
导师叶恒强
2007-06-01
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料物理与化学
关键词Tial金属间化合物 形变显微结构 形变诱发相变
摘要本论文运用高分辨电子显微术从两方面研究了TiAl合金的形变显微结构:一是形变孪晶与孪晶交截;二是形变诱发的相变。具体工作如下: 一、形变孪晶与孪晶交截 TiAl合金形变孪晶可在三种位置形核:具有小角度偏离(1.5度)的γ/γ非对称界面、γ/α2异质板条界面以及γ板条内部。其中前两者代表形变孪晶的非均匀形核机制,它们主要是通过界面错配位错的分解来形核的;而γ板条内的形核则代表了形变孪晶的均匀形核机制。形变孪晶的扩展都是通过a/6<11-2] Shockley 不全位错在连续的{111}γ 面上滑移完成的。TiAl合金形变孪晶发生交截时,入射孪晶穿过阻拦孪晶后可分解成为几个孪晶片层。入射孪晶的穿过分解机制与位错的分解反应密切相关。另外,研究还发现形变孪晶交截可以导致形变纳米孪晶带的形成,它代表着孪晶交截过程中一种新的应变传递方式。 二、形变诱发相变 研究发现,无论是室温变形还是高温变形,都可在孪晶交截区发生形变诱发的γ → DI-α2 相变,且该相变的相变产物不会随温度变化而发生改变。成分分析表明,该相变无成分变化,未发生原子扩散,DI-α2相的成分与母相γ 的成分完全一致。该相变的相变机制可用FCC→HCP相变的位错滑移模型来解释。通过衍射分析及模拟高分辨与实验像的对比,确定了DI-α2相的结构。DI-α2相并不是标准的α2-Ti3Al相,两者最大差异表现为它们的原子排布有序性及成分的不同。形成能的计算表明形变诱发的γ→DI-α2相变在能量上是可行的,并且DI-α2相不会转变为标准α2-Ti3Al相。另外,研究表明,强烈的应力场是TiAl合金中发生形变诱发γ→DI-α2相变的主要诱因,对该相变的发生起主要作用。 对形变诱发的α2→γ相变的研究表明,该相变既可在高温变形过程中发生,也可在室温变形过程中发生。所不同的是:在室温变形过程中,相变中无原子扩散及成分改变,相变产物并不是标准的γ相,它的成分和α2基体一致;在高温变形过程中,该相变发生了原子扩散、成分改变以及原子排布有序性的变化,相变产物是标准的γ相。形变诱发的α2→γ相变经常在α2相的堆垛层错区形核,而该相变的γ相长大过程则依靠a/3[1-100] Shockley 不全位错在交替的(0001)α2 晶面上滑移来实现。形变诱发的γ相与基体α2相之间遵从严格的取向关系:<11-20>α2//<-101>γ,(0001)α2//{111}γ。 最后,通过模拟高分辨像与实验像对比的方法研究了TiAl合金中的重叠结构的成像特点。研究表明所谓的形变导致的9R结构其实并不是真实的9R结构,它实际上只是两孪晶取向的γ板条重叠而导致的Moire条纹。另外,当TiAl合金中的γ或α2中的任一相从另一相析出时,常会在析出相小薄片的尖端出现条纹结构。人们曾认为它们是α2↔γ相变过程中的堆垛层错条纹,然而研究表明,这些条纹其实是由α2/γ两相重叠导致的Moire条纹。通过对TiAl合金中的重叠结构成像的研究,进一步加深了对TiAl合金形变诱发相变的认识。
其他摘要The deformation microstructures have been investigated from two aspects by high-resolution electron microscopy: one is deformation twin and twin intersection; the other is deformation-induced phase transformation. The detailed jobs are as following: 1.Deformation Twin and Twin Intersection Three kinds of nucleation regionshave been identified: γ/γinterface, γ/α2interface and the middle of γ lath. The former two represent the nonhomogeneous nucleation of deformation twin of TiAl, and the last one represents the homogeneous nucleation of deformation twin of TiAl. The propagation of deformation twin is fulfilled by the movement of a/6<11-2] dislocations on the successive {111}γ planes. The decomposition of incident twin in the twin intersection has been studied. It is a process related to the dislocation dissociation. The research also revealed that the intersection of deformation twin can cause the formation of nano-twins band. 2.The Deformation-induced Phase Transformations The deformation-induced γ→DI-α2 phase transformation can occur in the twin-intersection regions during both hot-temperature and room-temperature deformations. The productions of these phase transformations are the same one during these two kinds of deformations. Compositional analysis suggested that there is no compositional diffusion during this phase transformation and the DI-α2 phase has the same composition as the γ matrix. The mechanism of this phase transformation can be explained by the model of dislocation slip during FCC→HCP transformation. The detailed structure has been identified through the analysis of diffraction patterns and the contrast of simulated HREM with the experimental one. The DI-α2 phase is not the standard α2 phase. The different composition and order of atomic arrangement are their two major differences. The calculation of formation energy suggests that it is favorable in the energy for the deformation-induced γ→DI-α2phase transformation, and the DI-α2 phase will not transform to the standard α2 phase. The deformation-inducedα2→γ phase transformation can occur during both hot-temperature and room-temperature deformation. Since there is no compositional diffusion during room-temperature deformation, the DI-γ is not the standard γ phase and its composition is the same as the α2 matrix. However, because it is easy for compositional diffusion and the change of atomic arrangement during high-temperature deformation, the DI-γ phase is the standard γ phase. The deformation-inducedα2→γ phase transformation nucleates at the stacking faults of α2 phase, and the propagation of γ phase is completed by the glide of a/3[1-100] dislocations on the alternate (0001)α2 planes. The imaging of overlapped structures in TiAl has been studied through the comparison of simulated HREM images with experimental ones. The so-call 9R structure reported before is not the true 9R structure. It is the Moire fringe caused by the overlapping of two twin-related γ laths. In the precipitation of γ phase from α2 phase or the opposite precipitation, there will appear fringes in the tips of precipitates. These fringes were once considered by mistake as the stacking faults fringes during the α2↔γ transformation. This work revealed that they are Moire fringes caused by the overlapping of α2 and γ phases. Through the study of imaging of overlapped structures, we may have a better understanding of the deformation-induced phase transformation.
页数128
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16988
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
陈春林. 钛铝合金形变显微结构研究[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[陈春林]的文章
百度学术
百度学术中相似的文章
[陈春林]的文章
必应学术
必应学术中相似的文章
[陈春林]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。