IMR OpenIR
几种新型材料的磁性、电性、磁电阻及磁卡效应的研究
其他题名The magnetic, electronic transport properties, magnetoresistance and magnetocaloric effect in novel materials
杜娟
学位类型博士
导师张志东
2007-11-09
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料物理与化学
关键词磁性 电性 磁电阻 磁卡效应 制冷能力 类自旋玻璃 自旋阻挫
摘要我们采用磁控电弧熔炼、氩气保护下退火等方法制备了 ε-(Mn1-xFex)3+δGe 化合物和铁磁性哈斯勒合金 Ni-Mn-Sb 的系列合金试样。采用电弧熔炼、铜模吸铸方法制备了三元 Gd 基和 Tb 基块体金属玻璃系列合金试样。通过 X 射线衍射 (XRD)、差热分析 (DSC) 等手段分析了所制备合金试样的晶体结构及其晶格常数、非晶结构及其热力学参数。用标准电阻应变计测量了合金试样在磁场下的应变,用超导量子干涉仪 (SQUID) 测量合金试样的磁性、电性、磁电阻和磁卡效应。 在 ε-(Mn1-xFex)3+δGe 体系中, 我们主要研究了合金试样的电性和磁输运性质随 Fe替代量增加而变化的关系。解释了 Fe 替代后 (x > 0) 合金试样从金属导电性 (x = 0) 变为非金属导电性的原因是由于 ε-Mn3.25Ge 化合物特殊的电子能带结构。Fe 替代量为 0 ≤ x < 0.17 的合金试样,磁场对自旋涨落的抑制导致化合物出现负磁电阻。Fe 替代量为 0.17 ≤ x ≤ 0.2 化合物在 Tt (线性反铁磁 AFII-三角反铁磁 AFI) 以下和 TN (奈尔温度) 以上出现反常的正磁电阻。在 TN 以上的导电性符合跃迁式导电机制,磁场的加入使得这种导电机制中局域态波函数的叠加受到抑制,载流子运动的轨道收缩导致正磁电阻的产生;Tt 以下正磁电阻的产生是由于线性反铁磁的出现,从实验上验证了 Yamada 等人关于线性反铁磁体中会产生正磁电阻的理论推断。 由于环境保护意识的不断加强,近年来磁制冷技术和相关材料的研究成为制冷领域的研究热点。在反铁磁 ε-(Mn0.83Fe0.17)3+δGe 化合物的磁转变点 Tt 附近获得了磁场诱导的巨磁卡效应。当外加磁场后,该纯反铁磁体系在温度 Tt 附近发生了磁场诱导的 AFII-AFI 的变磁转变,伴随着这种变磁转变获得了数值巨大的反常磁卡效应。在 93 K 及 7 T 磁场下,最大磁熵变 ΔSM 为 11.6 J kg-1K-1。人们对磁制冷材料的研究都集中在铁磁性材料居里点附近,而我们的研究表明在纯反铁磁体中也可以获得数值巨大的磁卡效应,从而为研究和寻找新的磁制冷材料开辟了一个崭新的领域。 人们对铁磁性哈斯勒 (Heusler) 合金磁卡效应的研究集中在 Ni-Mn-Ga, Ni-Mn-In 和 Ni-Mn-Sn 三个体系中。我们选择了一种新的铁磁性哈斯勒合金 Ni-Mn-Sb 作为磁卡效应研究的对象,期望在室温获得大的磁卡效应。研究了 Ni50Mn50-xSbx 系列合金试样的马氏体转变行为、磁卡效应和磁场诱导的形状记忆效应。其中 Ni50Mn37Sb13 在 287 K,5 T 磁场下获得 9.1 J kg-1K-1 的大的磁熵变,此数值可与著名的室温磁制冷材料 Gd 相比 (ΔSM 为 9.8 J kg-1K-1)。此外在室温,合金试样Ni50Mn37Sb13 在相对低的磁场下(1.2 T) 显示了双向形状记忆效应。磁场诱导的反马氏体相变是产生大磁卡效应和应变的原因,而应变的动力是马氏体相大的磁晶各向异性。 由于非晶的无序结构的特点,使得铁磁性块体金属玻璃的磁转变点的温区较宽,从而为提高磁制冷能力 (RC) 提供了有利条件。研究了两种 Gd 基块体金属玻璃Gd55Co20Al25 和 Gd55Ni25Al20 的磁卡效应,分别在居里点 TC 附近, 7 T 磁场下获得了ΔSM 为 11.2 J kg-1K-1 (103 K) 和 10.8 J kg-1K-1 (82.5 K) 的大磁熵变;磁制冷能力 RC 值分别为 846 J kg-1 (5 T 磁场下为 541 J kg-1) 和 920 J kg-1 (5 T 磁场下为 640 J kg-1),制冷能力超过了所有晶体磁制冷材料。而且,Gd55Ni25Al20 非晶的 RC 值超过了所有报道的晶体 (Gd5Si2Ge1.9Fe0.1, 5 T 磁场下 RC 为 360 J kg-1) 和非晶磁制冷材料 (Gd53Al24Co20Zr3,5 T 磁场下 RC 为 590 J kg-1) 的 RC 值。所制备的两种三元 Gd 基非晶的大磁卡效应以及大磁制冷能力使得它们具有潜在的应用背景。 此外,在三元 Tb 基块体金属玻璃 Tb55Co20Al25 中发现了类自旋玻璃行为,并且在 Tf 以下相对低的磁场 (2 T) 获得了巨磁卡效应 (4.5 K,最大磁熵变 ΔSM 为 20 J kg-1K-1)。阐明了类自旋玻璃产生的原因 (无序结构导致的随机性、Tb-Co 之间的反铁磁性和 Co-Co 之间的铁磁性两种交换作用的竞争导致的自旋阻挫),巨磁熵变产生的原因 (非晶中Tb 和 Co 元素大的原子磁矩所导致的)。而巨磁熵变所需的相对较低的磁场是由于在 Tf 以下被冻结的具有磁随机各向异性的磁矩在相对较低的磁场下就会沿着磁场的方向排列。在类自旋玻璃体系中获得的反常的正磁卡效应为研究磁制冷的热力学行为提供了一定的依据。
其他摘要The ε-(Mn1-xFex)3+δGe and Ni-Mn-Sb compounds were prepared by melting in a magneto-controlled arc furnace and aging at a certain temperature in purified argon. Gd-based and Tb-based bulk metallic glasses were prepared by melting in a magneto-controlled arc furnace and re-melting the ingots to suck cast into a Cu mold to get a cylindrical rods. The microstructure of the crystalline compounds and the bulk metallic glasses were investigated by means of X-ray diffraction (XRD). The thermodynamic parameters of metallic glasses were investigated by means of differential scanning calorimetry (DSC). Magnetostriction of Ni-Mn-Sb compounds was investigated by means of a standard strain technique and a laser vibrometer. The magnetic, electronic properties, magnetoresistance (MR) and magnetocaloric effects (MCE) were measured by a superconducting quantum interference device (SQUID). In ε-(Mn1-xFex)3+δGe system with different Fe substitution (0 ≤ x ≤ 0.3), the temperature dependence of resistivity in a zero and nonzero magnetic field were studied. The change in the conductivity from the metallic conductivity of un-doped compound to the nonmetallic conductivity of doped compounds originates from the special electronic band structures. Small negative MR observed in the compounds with 0 ≤ x < 0.17 was due to the suppression of spin fluctuations by the magnetic field. For the compounds with 0.17 ≤ x ≤ 0.2, the positive MR appeared below Tt (from collinear to triangular antiferromagnetic configuration) was attributed to collinear antiferromagnetic configuration, which confirmed the theoretical conclusion suggested by Yamada et. al. that positive MR can appear in antiferromagnetism system as in our experiments. Meanwhile, the positive MR observed above TN is due to the shrinkage of the orbits in a magnetic field in the variable range hopping (VRH) conductivity. Nowadays, magnetic refrigeration technology becomes more popular because of environment protection. In antiferromagnet ε-(Mn0.83Fe0.17)3+δGe compound, a giant magnetic entropy change (the maximum ΔSM in a field change of 7 T is 11.6 J kg-1K-1 at 93 K) was obtained around the magnetic transition Tt at the function of a magnetic field. The study of magnetic refrigeration materials is focused on ferromagnetism around TC, while the large MCE obtained in our antiferromagnetic compound may open a new field in searching new magnetic refrigeration materials. Magnetocaloric effect has been extensively studied in three ferromagnetic Heusler alloys: Ni-Mn-Ga, Ni-Mn-Sn and Ni-Mn-In. We choose a new type of Heusler alloy Ni-Mn-Sb (Ni50Mn50-xSbx) to investigate its martensitic transition, MCE and magnetic field induced strain. In Ni50Mn37Sb13 compound, a large ΔSM of 9.1 J kg-1K-1 was obtained at temperature (287 K) and in a field change of 5 T. This value can be compared with well-known room-temperature magnetic refrigeration material Gd (ΔSM is - 9.8 J kg-1K-1 at 293 K in 5 T). Additionally, the Ni50Mn37Sb13 compound has bidirectional shape memory effect (SME) in a relatively low field (1.2 T). The origin of MCE and SME is a magnetic - field - induced inverse martensitic transition, and the motivation of SME is the large magnetic crystal anisotropy of martensitic phase. The wider temperature of magnetic transition of ferromagnetic bulk metallic glasses (BMG) due to the disorder structure is an advantage to achieve a lager value of magnetic refrigeration capacity (RC). MCE in two Gd - based BMGs (Gd55Co20Al25 and Gd55Ni25Al20) has been investigated, and a large entropy change (with a ΔSM of 11.2 J kg-1K-1 at 103 K or 10.8 J kg-1K-1 at 82.5 K in 7 T) was obtained. Large RC values of 846 J kg-1 (541 J kg-1 in 5 T) and 920 J kg-1 (640 J kg-1 in 5 T) were achieved for Gd55Co20Al25 and Gd55Ni25Al20, respectively. These RC values exceed all the crystalline magnetic refrigeration materials, while that of Gd55Ni25Al20 exceeds the reported values for all crystalline (Gd5Si2Ge1.9Fe0.1, RC is 360 J kg-1 in 5 T) and amorphous refrigeration materials (Gd53Al24Co20Zr3, RC is 590 J kg-1 in 5 T). Large ΔSM and RC values of the two Gd-based BMGs make them good candidates for application. Spin-glass like (SGL) behaviors have been observed in Tb-based (Tb55Co20Al25) BMG, and a large MCE (ΔSM is 20 J kg-1K-1 at 4.5 K) at a relatively low field (2 T) is achieved related to SGL. The origin of SGL in Tb55Co20Al25 BMG is random caused by disorder in amorphous structure, and spin frustration between ferromagnetic Co-Co couplings and antiferromagnetic Tb-Co couplings. The large magnetic entropy change is due to the magnitude of magnetic moments in this Tb-based BMG and the low applied field is because that the frozen magnetic moments below Tf are easy to align along the magnetic field in a low field. The positive MCE can provide a base for studying thermodynamic behaviors in magnetic refrigeration cycles. MCE discovered in SGL is not restricted by TC, different to paramagnetic salts, and therefore, it is possible to apply for temperatures lower than in the latter.
页数120
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17016
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
杜娟. 几种新型材料的磁性、电性、磁电阻及磁卡效应的研究[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[杜娟]的文章
百度学术
百度学术中相似的文章
[杜娟]的文章
必应学术
必应学术中相似的文章
[杜娟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。