IMR OpenIR
表面机械研磨AZ91D镁合金晶粒细化机制、表面合金化及摩擦磨损行为研究
其他题名Grain refinement mechanism、surface alloying behaviors and wear behaviors of AZ91D magnesium alloy subjected to surface mechanical attrition treatment
孙海庆
学位类型博士
导师卢柯
2008-05-24
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词纳米材料 表面机械研磨处理 Az91d镁合金 晶粒细化机制 摩擦磨损行为 表面合金化行为
摘要近年来,关于镁合金表面改性方面的研究得到了越来越多的关注,而作为表面改性方法之一的表面机械研磨技术(Surface mechanical attrition treatment, SMAT),由于可以在金属表面制备出性能优异的纳米晶层而得到了广泛的研究。然而目前为止,关于镁合金表面机械研磨微观组织结构演化规律及其表层纳米结构的性能尚缺乏系统的研究,尤其对镁合金中严重塑性变形所致的纳米晶粒形成机制,及其摩擦磨损性能及合金化行为,仍然缺乏统一的认识和深入的理解。因而,对于这些问题的研究越发具有重要的意义。 本工作中,采用了X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨电子显微镜(HREM)等测试技术系统研究了表面机械研磨处理AZ91D镁合金距表层不同深度的硬度及微观结构特征,并在此基础上总结了表层晶粒细化机制。同时,系统的研究了表面机械研磨AZ91D镁合金样品表面合金化行为以及摩擦磨损行为。主要研究结果如下: 表面机械研磨AZ91D镁合金微观组织结构演化与晶粒细化机制研究: 1. 在表面机械研磨AZ91D镁合金样品表层形成了等轴、随机取向的纳米晶粒。样品表层平均晶粒尺寸在32 nm左右,由于晶粒细化效应,表层微观硬度可达1.8 GPa。变形层微观结构随距表面深度增加呈梯度变化,晶粒(或晶胞)尺寸逐渐增加。表面层由表及里依次可分为:纳米晶结构区(0-100 m)、亚微米晶结构区(100-600 m)及变形孪晶结构区(600-1500 m)。 2. 表面机械研磨AZ91D镁合金晶粒细化机制主要包括以下三个过程: a) 变形初始阶段,孪晶变形成为主导的塑性变形机制并将原始晶粒切割细化为大量的孪晶板条; b) 由于逐渐增加的应变量及应变速率,大量位错列开始出现并将孪晶板条逐渐地分割成具有微小取向差的亚晶粒; c) 由于表层的高应变及高应变速率,动态再结晶行为开始发生,表层纳米晶结构形成。 表面机械研磨AZ91D镁合金合金化行为研究: 通过对表面机械研磨处理的AZ91D镁合金进行了表面合金化行为的研究发现,表面机械研磨样品的合金化温度可降至380℃并且在表面得到了厚度为100~150m的富Al合金层。此合金渗层内含有一层以镁固溶体为基体伴有大量Mg17Al12析出强化相的层状相层,其硬度值为基体的1.5倍。由于Mg17Al12相的强化作用,合金层的摩擦磨损性能相对于基体得到了很大的提高。可见表面机械研磨所致样品表面出现的大量晶界,使样品在表面合金化时表现出了更大的扩散活性。而在固体扩散合金化法的研究中,表面机械研磨样品与粗晶样品的合金化行为相差不大。 表面机械研磨AZ91D镁合金摩擦磨损行为研究: 1. 相对于粗晶样品而言,SMAT样品表现出了略高的摩擦系数以及较高的耐磨性。通过对磨痕表面及磨屑形貌等进行SEM观察,发现SMAT样品与粗晶样品具有相同的磨损机制,即以切削和犁沟为主的磨料磨损与氧化磨损的一种混合机制;表面机械研磨样品提高的耐磨性主要是由于表层硬度提高的缘故,这源于表层晶粒的细化效应。 2. 随摩擦副滑擦速率的增加,粗晶样品和表面机械研磨样品的磨损率均减小并在较高滑擦速率下趋于一致。通过对两者磨痕变形层的微观结构演化进行TEM观察发现,SMAT样品磨痕微观结构变化不大,而粗晶样品在较高的滑擦速率下,由于应变速率和瞬间温度的升高,磨痕表面的晶粒尺寸被细化至纳米量级。
其他摘要Recently, much attention has been focused on the surface modification technologies of magnesium alloys. Among them the surface mechanical attrition treatment (SMAT) technique, owing to its ability to fabricate a nanostructural surface layer with excellent properties in many metals, has been receive intensive investigations. However, up to now, the clear scenery of microstructure evolution and surface properties of the nanostructural surface layer in magnesium alloys induced by SMAT, especially the formation mechanism of nanocrystallits during plastic deformation, wear behaviors and surface alloying behaviors in magnesium alloys, is still lacking. Therefore, understanding of these problems becomes more and more crucial. In this work, microstructural characteristics at different depths from nanostructural surface layer in AZ91D magnesium alloy samples induced by SMAT were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM), respectively. Hardness and microstructure evolution of the surface layer were measured and the grain refinement mechanism was summarized. Wear and surface alloying behavior of the SMAT AZ91D magnesium alloy samples were analyzed too. The main results are followed: Ⅰ.The microstructure evolution and grain refinement mechanism of the SMAT AZ91D magnesium alloy: 1. Equiaxed nanocrystallines with random crystallographic orientations were obtained in the surface layer of AZ91D magnesium alloy sample processed by means of SMAT, where average grain sizes is 32 nm. The maximum of hardness is up to 1.8 GPa in the SMAT AZ91D magnesium alloy sample due to the grain refinement effect in surface. With an increasing depth from the top surface, sizes of grains or cells increase. Owing to the gradient variation of microstructures, the SMAT surface layer can be subdivided into three sections along depth from the top surface, i.e., the nanocrystalline structure regime (0-100 m), submicro-crystalline structure regime (100-600 m) and deformed twining regime (600-1500 m). 2. The following elemental processes are involved in the grain refinement process in SMAT AZ91D magnesium alloy: a) At the initial stage,deformation twinning dominates the plastic deformation and divides the coarse grains into finer twin matrix lammellae. b) With an increasing strain and strain rate, large numbers of dislocation arrays form and divide the twin matrix lammellae into subgrains with small misorientations; c) Due to the high strain and strain rate in the treated surface, surface nanocrystalline layer is formed via dynamic recrystallization of the deformed structure. Ⅱ. Surface alloying behavior of SMAT AZ91D magnesium alloy: A 100 m to 150 m thick Al-enriched alloyed layer was formed on the surface of an AZ91D alloy through diffusion alloying at temperature as low as 380C after SMAT. Large fraction of lamellar microstructure observed within the surface alloyed layer was confirmed to be Mg17Al12 precipitates in Mg solid solution matrix by using TEM, of which hardness is about 1.5 times that of matrix. The alloyed layer shows an increased wear resistance than matrix due to the strengthening effect of Mg17Al12 phase. It illustrates SMAT generated a large number of grain boundaries in the nanocrystalline layer, which enhanced appreciably atomic diffusion. In the solid diffusion alloying investigation, the SMAT samples show a similar alloying behavior with the coarse-grained one. Ⅲ. Friction and wear behaviors of SMAT AZ91D magnesium alloy: 1. The nanocrystalline layer fabricated by means of SMAT in the Mg alloy shows a slightly lower friction coefficient and improved tribological properties compared with those of the coarse-grained sample. Analyzing to the worn surface and debris, we concluded that both the samples show a similar abrasion mechanism -- the mixture mechanism of cutting, plowing in debris abrasion and oxidation. The enhancement in wear resistance of the SMAT Mg alloy is associated with the increased hardness and strength induced by grain refinement. 2. With the elevation of sliding speed, the wear volume rates of the coarse-grained and the SMAT samples decrease and reach into the same level at high sliding speeds. TEM observations of the subsurface structure evolution revealed that at a velocity of 0.028 m/s, the SMAT layer remains almost unchanged during sliding while the grain size of the subsurface of the CG sample is reduced into nanometer scale due to the plastic deformation and the increment of local temperature developed during sliding.
页数104
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17043
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
孙海庆. 表面机械研磨AZ91D镁合金晶粒细化机制、表面合金化及摩擦磨损行为研究[D]. 金属研究所. 中国科学院金属研究所,2008.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[孙海庆]的文章
百度学术
百度学术中相似的文章
[孙海庆]的文章
必应学术
必应学术中相似的文章
[孙海庆]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。