IMR OpenIR
Mn 基金属间化合物及氧化物薄膜的磁性和电性
其他题名Magnetic and electrical properties of manganese-based intermetallics and oxide films
张强
学位类型博士
导师张志东
2008-08-05
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料物理与化学
关键词磁卡效应 巨磁电阻效应 类自旋玻璃态 交换偏置 竖直偏置 反对成的磁滞回线 金属绝缘体转变
摘要我们采用电弧熔炼、氩气保护退火的方法制备了(Mn1-xFex)5Ge3、CoMnSi和InMn3化合物。采用多步固态反应的方法制备了Mn2-xZnxSb化合物。采用脉冲激光沉积的方法制备了La0.7Sr0.3MnO3和Nd0.45Sr0.55MnO3薄膜。通过X射线衍射、扫描电镜(SEM), 透射电镜(TEM), 原子力显微镜(AFM)等来探测样品的结构及微观结构。用超导量子干涉仪(SQUID)来测量样品的磁性能、磁卡效应、输运性能及磁输运性能。 在(Mn1-xFex)5Ge3化合物中,我们发现了大的磁卡效应,最大磁熵变为(Mn0.9Fe0.1)5Ge3化合物的8.01 J/kg K,是所有Mn5Ge3基固溶体的最大值。而且,Fe对Mn的替代大大的提高了制冷系数,最大制冷系数为(Mn0.8Fe0.2)5Ge3化合物的237 J/kg,该数值甚至大于一些著名的磁制冷材料,如Gd5Ge2Si2 (200 J/kg), Gd5Ge1.9Si2Fe0.1 (235 J/kg), MnFeP0.45As0.55 (225 J/kg)等等。因此,大的磁卡效应和被提高的制冷系数使(Mn1-xFex)5Ge3化合物成为非常有潜力的室温磁制冷材料。 除了人工多层膜结构,金属间化合物由于含有有趣的机理而被认为是研究巨磁电阻效应的另一大潮流。在Mn2-xZnxSb (x < 0.3)化合物中,伴随着两种亚铁磁态之间的一级相转变,我们发现了巨磁电阻效应。5 T磁场下最大的数值为Mn1.9Zn0.1Sb化合物中的-37.6%。我们的分析表明,超布里渊区理论和自旋相关散射机制共同对该化合物的巨磁电阻效应起因产生了作用。磁滞和相共存表明这种弱亚铁磁-亚铁磁的转变为一级相变。在一定的温度范围,只要场诱导弱亚铁磁-亚铁磁转变发生,在磁化曲线和电阻曲线中都会发现有趣的蝴蝶曲线;在远离弱亚铁磁-亚铁磁转变发生的温度区间,磁化曲线中没有蝴蝶曲线,但在电阻曲线仍旧发现了蝴蝶曲线,揭示了两种情况不同的机制。 对于已报导的金属间化合物的巨磁电阻效应,都发生在金属绝缘体转变或者磁相转变附近一个较窄的温度区间。我们在CoMnSi化合物中发现了从5 K到最大测量范围380 K的全部温度区间的巨磁电阻效应,5 T下最大值为245 K的- 18.3%,最小值为85 K下的- 5.5%。这种奇特的现象归因于不同温度区间的两种不同的机制。在110 K以下,巨磁电阻是来源于双螺旋结构中被压抑的自旋涨落;在110 K到380 K之间,更大的磁电阻是由于从双螺旋到扇形结构的磁结构发生变化时导致的对K-空间限制的降低引起的。 我们详细的研究了InMn3的磁性能,发现在45 K以下InMn3进入了类自旋玻璃态和铁磁态的共存态。交换偏置现象一般在多层膜和纳米系统中被发现,我们在InMn3化合物中也发现了交换偏置现象和反常竖直偏置的共存。最大的交换偏置场为7.8 kOe。巨交换偏置现象是由于在类自旋玻璃态和铁磁态的界面上产生大的单方向各向异性导致的,而大的反常的竖直偏置是由于类自旋玻璃态可以提供被钉扎的磁化强度导致的。而且,在InMn3化合物的场冷后磁滞回线中发现了大的不对称性,我们认为这是由于无序冻结自旋的多组态之间的不可逆变化导致的。明显的磁锻炼效应也在InMn3中被发现,我们用被修改的Stoner-Wohlfarth模型成功的对之进行了解释。 我们用脉冲激光沉积的方法在(100) SrTiO3基片上生长了超薄的Nd0.45Sr0.55MnO3薄膜,系统的研究了该薄膜的结构,微观结构和电性。XRD显示成功生长出(100)织构的薄膜。AFM显示薄膜表面非常平滑,其粗糙度只有0.665 nm。TEM显示基片和薄膜之间良好的外延性。对电性的研究表明,基片和薄膜之间的应力使之显示绝缘体的导电行为。对样品进行退火处理后,应力得到部分的释放,使薄膜发生了绝缘体到金属导电行为的转变,同时伴随着巨磁电阻效应的产生。
其他摘要The (Mn1-xFex)5Ge3, CoMnSi and InMn3 compounds were prepared by arc-melting appropriate metals in a magneto-controlled arc furnace and annealing at a certain temperature in purified argon atmosphere. The Mn2-xZnxSb compounds were prepared by solid state reaction method, followed by multistep heat treatment. The La0.7Sr0.3MnO3 and Nd0.45Sr0.55MnO3 films were prepared by pulsed laser deposition (PLD) method. The structures of crystalline compounds were studied by X-ray diffraction (XRD), whereas the microstructures of films were investigated by means of XRD diffraction, scanning electron microscope (SEM), transmission electron microscope (TEM) and atomic force microscope (AFM). The magnetic, transport properties, magneto-transport and magnetocaloric properties were measured by a superconducting quantum interference device (SQUID) magnetometer. In (Mn1-xFex)5Ge3 compounds ,we found a large magnetocaloric effects (MCE). The maximum of magnetic entropy changes of 8.01 J/kg K under an external field change of 5 T is obtained for (Mn0.9Fe0.1)5Ge3, which is the largest value in Mn5Ge3–based solid solutions. Moreover, the Fe substitution increases the refrigeration capacity (RC) value greatly. The largest RC value of 237 J/kg in (Mn0.8Fe0.2)5Ge3 even compares favorably to that of many well-known magnetic refrigeration materials, such as Gd5Ge2Si2 (200 J/kg), Gd5Ge1.9Si2Fe0.1 (235 J/kg), MnFeP0.45As0.55 (225 J/kg), etc. Thus the Fe-containing (Mn1-xFex)5Ge3 compounds are much-improved magnetic refrigerants for the application of room-temperature magnetic refrigeration. The increase of the RC value is probably resulted from the formation of magnetic nanostructure. In addition to artificial superlattices, it has been widely realized that intermetallic compounds with interesting mechanisms could be considered as another stream for the research of the giant magnetoresistance (GMR) effect. A giant magnetoresistance is observed in Mn2-xZnxSb (x < 0.3) system associated with a first-order transition between two ferrimagnetic states, with the largest MR ratio of -37.6% in a field of 5 T at 120 K for Mn1.9Zn0.1Sb compound. Our studied show that the influences of both super-zone gap and spin-dependent scattering are responsible for GMR in the present system. The butterfly loops in both the magnetization and resistivity are observed as long as the field-induced WFI-FI transition occurs in a certain temperature region. There were no butterfly loops in the magnetization curves when the Mn2-xZnxSb compounds are in the stable WFI or FI state, but the butterfly loop feature persists in resistivity, revealing a different mechanism of these two cases. As known, the large magnetoresistance(MR) effect in almost all the intermetallic compounds occurs in a limited temperature region around a metal-nonmetal transition or a magnetic phase transition. However, a large MR is observed in double helical CoMnSi compound over an entire temperature region from 5 K to the maximum measuring temperature of 380 K, with the largest MR ratio of - 18.3% at 245 K and the smallest MR ratio of - 5.5% at 85 K at 5 T. This phenomenon is ascribed to two different mechanisms in different temperature regions. The suppressed spin fluctuations of the double helical structure are responsible for the MR below 110 K. However, in consideration of the natural multilayer superstructure of CoMnSi, the larger MR above 110 K is ascribed to the decrease of K-space restrictions when the change of magnetic structure from double helical order to fan order occurs. Bulk InMn3 compound enters into the coexistence of the spin-glass-like (SGL) phase and ferromagnetic (FM) phase. Interestingly, the giant exchange bias (EB) and anomalous large vertical magnetization shift are observed simultaneously in InMn3. The giant exchange bias field as large as 7.8 kOe is found at 2 K, which is resulted from the strong unidirectional anisotropy at the SGL/FM interfaces. The anomalous large vertical shift might be ascribed to the existence of the spin-glass-like phase that could provide a large pinned magnetization. Moreover, the asymmetrical hysteresis loops, directly related to this training effect, are also found and possibly resulted from irreversible changes of multiple configurations among disorder frozen spins of spin-glass-like phase. The clear training effect is observed, which can be interpreted by modified Stoner-Wohlfarth model. Ultrathin Nd0.45Sr0.55MnO3 film on (100) SrTiO3 substrate is fabricated by pulsed laser deposition technology. The structure, microstructure and transport properties are studied in detail. XRD indicates that the film is (100) oriented and AFM suggests the smooth surface with the roughness of only 0.665 nm. TEM also suggests the epitaxial growth of the film. The temperature dependence of the resistivity curve indicates, unlike the bulk Nd0.45Sr0.55MnO3, the insulator-like behavior occurs in Nd0.45Sr0.55MnO3 / SrTiO3 film, which is interpreted as the strong strain between the substrate and film. After the annealing at 1000o for five hours, the transition from insulator to metal electrical behaviors accompanied with the GMR effect occurs due to the partly release of this strong strain.
页数137
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17166
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
张强. Mn 基金属间化合物及氧化物薄膜的磁性和电性[D]. 金属研究所. 中国科学院金属研究所,2008.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张强]的文章
百度学术
百度学术中相似的文章
[张强]的文章
必应学术
必应学术中相似的文章
[张强]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。