IMR OpenIR
高强高阻尼Ni-Ti-Nb-Mo形状记忆合金的研究
其他题名Investigation on Ni-Ti-Nb-Mo Shape Memory Alloys with High Strength and High Damping Capacity
陈英
学位类型硕士
导师戎利建
2009-05-27
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料加工工程
关键词Ni-ti-nb形状记忆合金 相变特性 力学性能 阻尼性能 形状记忆效应
摘要Ni-Ti-Nb形状记忆合金由于其宽的相变滞后和良好的形状记忆性能引起了工程界的广泛关注,已成功用于制作连接用紧固件。然而,随着现代液压、气压管路压力的提高,对管路连接用记忆合金的力学性能提出了更高的要求, 现有的Ni-Ti-Nb合金由于强度低已满足不了使用要求。同时Ni-Ti-Nb合金作为一种重要的孪晶型阻尼材料,应用时一般呈马氏体态,但此时合金的屈服强度很低,限制了合金作为结构材料时的应用。因此,近些年提高Ni-Ti-Nb合金的力学性能逐渐成为记忆合金领域的研究重点。 本论文通过调整合金的Ni/Ti原子比,控制Nb元素和Mo元素的含量来改善合金的性能,研究Nb含量和Mo含量变化对Ni-Ti-Nb合金微观组织、相变特性、力学性能、形状记忆效应、宽滞后及阻尼性能的影响,以探索新型的高强高阻尼Ni-Ti-Nb-Mo四元形状记忆合金。 针对高强度Ni-Ti-Nb合金的特征,确定以含有4.5at.%Nb的Ni-Ti-Nb合金为基础合金,通过Nb和Mo的共同加入提高合金的力学性能。研究发现:Mo元素在合金中均匀分布抑制了粗大β-Nb的生成,使得晶界附近出现细小弥散的富Nb颗粒组成的短条状组织。在Nb和Mo的共同固溶强化的作用下,合金的室温屈服强度由传统合金的450MPa提高到600MPa,延伸率保持28%的较高水平。基体强度的提高使得合金的临界滑移应力提高,合金的形状记忆效应得到有效改善,其中Mo含量为0.5at.%的合金最大可完全恢复应变接近8%,已达到Ni-Ti二元合金的水平。Mo元素的加入进一步增大了Ni-Ti-Nb合金的相变滞后,合金预变形20%时,相变滞后接近200℃,高于现有Ni-Ti-Nb合金的150℃。这种新型的高强度合金有望应用于液压、气压高压管路,并可能应用于对强度要求更高的大尺寸管接头的研发。 在高强高阻尼Ni-Ti-Nb合金方面,选择Nb含量为9.0at%的Ni-Ti-Nb合金作为基础合金,研究Mo含量的加入对合金性能的影响。结果表明Mo的添加增大了Nb在NiTi基体中的最大固溶度,但对合金在常温时的固溶度影响较小,由此使得大量Nb(Mo)颗粒从基体中析出。这种富Nb颗粒对合金的沉淀强化作用,协同合金中Nb和Mo的固溶强化作用,使得合金在马氏体态下屈服强度由传统的150MPa增加到300MPa,合金延伸率达到48%,其性能远高于一般NiTi基记忆合金。Mo的添加不仅诱发合金发生R相变,同时富Nb颗粒周围的应力场使得合金在冷却过程中出现了多阶相变。NiTi基体数量的增加和富Nb颗粒的析出增大了合金的本征阻尼,显著提高了Ni-Ti-Nb合金的阻尼性能,其马氏体态本征内耗值达到0.015。同时这种新型的高强高阻尼Ni-Ti-Nb-Mo合金还具有较好的形状记忆效应和宽滞后特性。这种兼有较高力学性能和阻尼性能的合金可用于设计智能阻尼元件和耗能减振装置等,具有很好的应用前景。
其他摘要Ni-Ti-Nb shape memory alloys have attracted considerable attention due to wide transformation hysteresis and excellent shape memory effect, which have been successfully applied as couplings and fasteners. However, the yield stress of present Ni-Ti-Nb alloys already can’t satisfy the practical requirements for the high pressure tube. As an important twin-type damping alloys, Ni-Ti alloy with high damping capacity is usually in the martensitic state, while the mechanical properties, especially the yield strength, are not ideal for further development requirements as structural material. Therefore, recent research focuses more eyes on improving the mechanical properties of the Ni-Ti-Nb alloys. In this thesis, the work on improving the performance was taken by adjusting the Ni/Ti ratio and controlling the Nb and Mo content in Ni-Ti-Nb alloys. The effect of Mo and Nb on the performance of Ni-Ti-Nb alloys was investigated, such as the microstructure, phase transformation behavior, mechanical behavior, shape memory effect, transformation hysteresis and damping capacity, and two kind novel Ni-Ti-Nb-Mo quarternary shape memory alloys with high yield strength and high damping were obtained. Based on the characteristics of the alloys with high yield strength, suitable Mo and Nb were added into the Ni-Ti-Nb alloy with 4.5at.%Nb to improve the mechanical properties. It is found that the uniform distribution of Mo depresses the appearance of coarse β-Nb particles on the grain boundaries and short stripped texture consisting of abundant fine disperse Nb-rich particles appears around the grain boundaries. The yield strength of the alloys was enhanced from 450MPa to 600MPa due to the solution strengthening of Nb and Mo and the elongation keeps in a high level with 28%. The yield strength promotion of the matrix increases the critical stress for slip, which is responsible for the improvement of the shape memory effect. The maximum recoverable strain of the alloy with 0.5at.%Mo is near 8% and has reached the high level of Ni-Ti binary alloys. Mo addition further enlarges the transformation hysteresis. When the Ni-Ti-Nb-Mo alloy pre-deformes 20%, the transformation hysteresis is close to 200℃ which is higher than 150℃ in traditional Ni-Ti-Nb alloys. This novel high-strength alloy is promising to be used for high pressure tube and the macro-scale coupling with higher-qulity requirements. As for the alloys with high yield strength and high damping capacity, the Ni-Ti-Nb alloy with 9.0at.%Nb is employed as the based alloy for the addition of the Mo element. It is found that the addition of Mo increases the solubility of Nb and Mo in the NiTi matrix so that the degree of supersaturation increases at the ambient temperature to induce large quantities of fine Nb-rich particles precipitating from the NiTi matrix. Because of the precipitation strengthening of the Nb-rich particles and the solution strengthening of Nb atom and Mo atom, the yield strength of the Ni-Ti-Nb-Mo alloy in the martensitic state is enhanced from 150MPa to 302MPa, and the elongation reaches 48%. Mo addition in the alloy with 9.0at.%Nb induces R transformation and three step tansformations occur due to the stress field around the Nb-rich particles. The enlargement of NiTi matrix zone and the precipitation of Nb-rich particles increase the intrinsic damping. Hence the damping capacity of Ni-Ti-Nb alloy can be effectively improved by Mo addition, which can reach 0.015 in the martensitic state. In addition, the Ni-Ti-Nb-Mo alloy has good shape memory effect and wide transformation hysteresis. This kind of alloy owns both high yield strength and high damping capacity, which has widely potentiality for engineering application, such as intelligent damping components or energy dissipation devices.
页数115
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17245
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
陈英. 高强高阻尼Ni-Ti-Nb-Mo形状记忆合金的研究[D]. 金属研究所. 中国科学院金属研究所,2009.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[陈英]的文章
百度学术
百度学术中相似的文章
[陈英]的文章
必应学术
必应学术中相似的文章
[陈英]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。