IMR OpenIR
Heterogeneous precipitate microstructure in titanium alloys for simultaneous improvement of strength and ductility
Hao, Mengyuan1; Li, Pei1,5; Li, Xuexiong2; Zhang, Tianlong1; Wang, Dong1; Sun, Qiaoyan1; Liu, Libin3; Li, Jinshan4; Cui, Yuyou2; Yang, Rui2; Xu, Dongsheng2
Corresponding AuthorSun, Qiaoyan(qysun@mail.xjtu.edu.cn) ; Xu, Dongsheng(dsxu@imr.ac.cn)
2022-10-10
Source PublicationJOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN1005-0302
Volume124Pages:150-163
AbstractThe design of alloys with simultaneous high strength and high ductility is still a difficult challenge. Here, we propose a new approach to designing multi-phase alloys with a synergistic combination of strength and ductility by engineering heterogeneous precipitate microstructures through the activation of different transformation mechanisms. Using a two-phase titanium alloy as an example, phase field simulations are carried out firstly to design heat treatment schedules that involve both conventional nucleation and growth and non-conventional pseudospinodal decomposition mechanisms, and the calculated microstructures have been evaluated by crystal plasticity finite element modeling. According to simulations, we then set a two-step heat treatment to produce bimodal alpha+ beta microstructure in Ti-10V-2Fe-3Al. Further mechanical testing shows that the ductility of the alloy is increased by -50% and the strength is increased by -10% as compared to its unimodal counterpart. Our work may provide a general way to improve the mechanical properties of alloys through multiscale microstructure design. (c) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
KeywordTitanium alloys Phase field simulation Crystal plasticity finite element Two-step aging Pseudospinodal decomposition mechanisms Multiscale heterogeneous microstructure
Funding OrganizationNational Key Research and Development Program of China ; National Natural Science Foundation of China ; City University of Hong Kong
DOI10.1016/j.jmst.2022.02.025
Indexed BySCI
Language英语
Funding ProjectNational Key Research and Development Program of China[2016YFB0701302] ; National Natural Science Foundation of China[52171012] ; National Natural Science Foundation of China[51931004] ; City University of Hong Kong[7004894] ; City University of Hong Kong[9380060]
WOS Research AreaMaterials Science ; Metallurgy & Metallurgical Engineering
WOS SubjectMaterials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS IDWOS:000788165000007
PublisherJOURNAL MATER SCI TECHNOL
Citation statistics
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/172642
Collection中国科学院金属研究所
Corresponding AuthorSun, Qiaoyan; Xu, Dongsheng
Affiliation1.Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
3.Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
4.Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
5.Thermal Power Res Inst Co Ltd, Xian 710032, Peoples R China
Recommended Citation
GB/T 7714
Hao, Mengyuan,Li, Pei,Li, Xuexiong,et al. Heterogeneous precipitate microstructure in titanium alloys for simultaneous improvement of strength and ductility[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2022,124:150-163.
APA Hao, Mengyuan.,Li, Pei.,Li, Xuexiong.,Zhang, Tianlong.,Wang, Dong.,...&Xu, Dongsheng.(2022).Heterogeneous precipitate microstructure in titanium alloys for simultaneous improvement of strength and ductility.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,124,150-163.
MLA Hao, Mengyuan,et al."Heterogeneous precipitate microstructure in titanium alloys for simultaneous improvement of strength and ductility".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 124(2022):150-163.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Hao, Mengyuan]'s Articles
[Li, Pei]'s Articles
[Li, Xuexiong]'s Articles
Baidu academic
Similar articles in Baidu academic
[Hao, Mengyuan]'s Articles
[Li, Pei]'s Articles
[Li, Xuexiong]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Hao, Mengyuan]'s Articles
[Li, Pei]'s Articles
[Li, Xuexiong]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.