IMR OpenIR
Precipitation behavior of Cu-NiAl nanoscale particles and their effect on mechanical properties in a high strength low alloy steel
Du, Yubin1,2; Hu, Xiaofeng1; Zhang, Shouqing1,2; Song, Yuanyuan1; Jiang, Haichang1; Rong, Lijian1
Corresponding AuthorHu, Xiaofeng(xfhu@imr.ac.cn) ; Rong, Lijian(ljrong@imr.ac.cn)
2022-08-01
Source PublicationMATERIALS CHARACTERIZATION
ISSN1044-5803
Volume190Pages:10
AbstractThe precipitation behavior of Cu-NiAl nanoscale particles in a high strength low alloy steel and their effect on mechanical properties are studied systemically by atom probe tomography and tensile testing. The results display that the Cu-rich zones will nucleate firstly from the supersaturated solid solution for the experimental high strength low alloy steel tempered at 500 ? for 0.08 h, which will transform into Cu-rich particles and also promote the heterogeneous nucleation of isolated NiAl particles. The precipitation sequence in the studied high strength low alloy steel can be expressed as: supersaturated solid solution -> Cu-rich zones -> Cu-rich particles + isolated NiAl -> Cu-NiAl + isolated NiAl. With increasing tempering time, the NiAl (Cu-NiAl + isolated NiAl) particles will coarsen continuously and the Cu-NiAl particles have larger radius and higher number density than the isolated NiAl particles. The tensile testing results reveal that NiAl particles exhibit strong precipitation strengthening and result in a strength plateau of about 1423-1486 MPa at 2-310 h. With tempering time increasing, the elongation decreases firstly and attains the minimum value of about 7.5% in the 5 h tempered condition due to the high number density (1.95 x 1024 m-3) of NiAl particles, and then the elongation increases gradually to 13.0% at 310 h. Obviously, the sample tempered for 310 h displays a beneficial combination of yield strength (1423 MPa) and elongation (13.0%).
KeywordHigh strength low alloy steel Precipitation behavior Cu-NiAl particles Tempering time Mechanical property
Funding OrganizationLiaoning Revitalization Talents Program ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Liaoning Natural Science Foundation ; Doctoral Start-up Project of Liaoning Province Natural Science Foundation
DOI10.1016/j.matchar.2022.112014
Indexed BySCI
Language英语
Funding ProjectLiaoning Revitalization Talents Program[XLYC1907143] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDC04000000] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA28040200] ; Liaoning Natural Science Foundation[2020-MS-008] ; Doctoral Start-up Project of Liaoning Province Natural Science Foundation[2020-BS-006]
WOS Research AreaMaterials Science ; Metallurgy & Metallurgical Engineering
WOS SubjectMaterials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering ; Materials Science, Characterization & Testing
WOS IDWOS:000811310800003
PublisherELSEVIER SCIENCE INC
Citation statistics
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/174375
Collection中国科学院金属研究所
Corresponding AuthorHu, Xiaofeng; Rong, Lijian
Affiliation1.Chinese Acad Sci, Inst Met Res, CAS Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
Recommended Citation
GB/T 7714
Du, Yubin,Hu, Xiaofeng,Zhang, Shouqing,et al. Precipitation behavior of Cu-NiAl nanoscale particles and their effect on mechanical properties in a high strength low alloy steel[J]. MATERIALS CHARACTERIZATION,2022,190:10.
APA Du, Yubin,Hu, Xiaofeng,Zhang, Shouqing,Song, Yuanyuan,Jiang, Haichang,&Rong, Lijian.(2022).Precipitation behavior of Cu-NiAl nanoscale particles and their effect on mechanical properties in a high strength low alloy steel.MATERIALS CHARACTERIZATION,190,10.
MLA Du, Yubin,et al."Precipitation behavior of Cu-NiAl nanoscale particles and their effect on mechanical properties in a high strength low alloy steel".MATERIALS CHARACTERIZATION 190(2022):10.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Du, Yubin]'s Articles
[Hu, Xiaofeng]'s Articles
[Zhang, Shouqing]'s Articles
Baidu academic
Similar articles in Baidu academic
[Du, Yubin]'s Articles
[Hu, Xiaofeng]'s Articles
[Zhang, Shouqing]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Du, Yubin]'s Articles
[Hu, Xiaofeng]'s Articles
[Zhang, Shouqing]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.