Robust Interfacial Modifier for Efficient Perovskite Solar Cells: Reconstruction of Energy Alignment at Buried Interface by Self-Diffusion of Dopants | |
Wang, Lipeng1,2; Xia, Jianxing3; Yan, Zheng4; Song, Peiquan5; Zhen, Chao1; Jiang, Xin1; Shao, Guang6; Qiu, Zeliang7; Wei, Zhanhua5; Qiu, Jianhang1; Nazeeruddin, Mohammad Khaja3 | |
Corresponding Author | Xia, Jianxing(jianxing.xia@epfl.ch) ; Wei, Zhanhua(weizhanhua@hqu.edu.cn) ; Qiu, Jianhang(jhqiu@imr.ac.cn) ; Nazeeruddin, Mohammad Khaja(mdkhaja.nazeeruddin@epfl.ch) |
2022-06-22 | |
Source Publication | ADVANCED FUNCTIONAL MATERIALS
![]() |
ISSN | 1616-301X |
Pages | 10 |
Abstract | The under-coordinated defects within perovskite and its relevant interfaces always attract and trap the free carriers via the electrostatic force, significantly limiting the charge extraction efficiency and the intrinsic stability of perovskite solar cells (PSCs). Herein, self-diffusion interfacial doping by using ionic potassium L-aspartate (PL-A) is first reported to restrain the carrier trap induced recombination via the reconstruction of energy level structure at SnO2/perovskite interface in conventional n-i-p structured PSCs. Experiments and theories are consistent with the PL-A anions that can remain at the SnO2 surface due to strong chemical adsorption. During the spin-coating of the perovskite film, the cations gradually diffuse into perovskite and endow an n-doping effect, which provides higher force and a better energy level alignment for the carrier transport. As a result, they obtained 23.74% power conversion efficiency for the PL-A modified small-area devices, with dramatically improved open-circuit voltage of 1.19 V. The corresponding large-area devices (1.05 cm(2)) achieved an efficiency of 22.23%. Furthermore, the modified devices exhibited negligible hysteresis and enhanced ambient air stability exceeding 1500 h. |
Keyword | defect passivation energy level alignment interfacial modifications perovskite solar cells |
Funding Organization | National Natural Science Foundation of China ; Liaoning Province Natural Science Foundation ; Young Talent Program of Shenyang National Laboratory for Materials Science ; Sichuan Science and Technology Program |
DOI | 10.1002/adfm.202204725 |
Indexed By | SCI |
Language | 英语 |
Funding Project | National Natural Science Foundation of China[51402308] ; Liaoning Province Natural Science Foundation[2021-MS-008] ; Young Talent Program of Shenyang National Laboratory for Materials Science[L2019F40] ; Sichuan Science and Technology Program[2020JDRC0090] |
WOS Research Area | Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics |
WOS Subject | Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter |
WOS ID | WOS:000814397400001 |
Publisher | WILEY-V C H VERLAG GMBH |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/174697 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Xia, Jianxing; Wei, Zhanhua; Qiu, Jianhang; Nazeeruddin, Mohammad Khaja |
Affiliation | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China 3.Ecole Polytech Fed Lausanne EPFL, Inst Chem Sci & Engn, CH-1951 Sion, Switzerland 4.Shenyang Aerosp Univ, Coll Energy & Environm, Shenyang 110136, Peoples R China 5.Huaqiao Univ, Coll Mat Sci & Engn, Inst Luminescent Mat & Informat Displays, Xiamen 361021, Peoples R China 6.Sun Yat Sen Univ, Sch Chem, Guangzhou 510006, Peoples R China 7.Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China |
Recommended Citation GB/T 7714 | Wang, Lipeng,Xia, Jianxing,Yan, Zheng,et al. Robust Interfacial Modifier for Efficient Perovskite Solar Cells: Reconstruction of Energy Alignment at Buried Interface by Self-Diffusion of Dopants[J]. ADVANCED FUNCTIONAL MATERIALS,2022:10. |
APA | Wang, Lipeng.,Xia, Jianxing.,Yan, Zheng.,Song, Peiquan.,Zhen, Chao.,...&Nazeeruddin, Mohammad Khaja.(2022).Robust Interfacial Modifier for Efficient Perovskite Solar Cells: Reconstruction of Energy Alignment at Buried Interface by Self-Diffusion of Dopants.ADVANCED FUNCTIONAL MATERIALS,10. |
MLA | Wang, Lipeng,et al."Robust Interfacial Modifier for Efficient Perovskite Solar Cells: Reconstruction of Energy Alignment at Buried Interface by Self-Diffusion of Dopants".ADVANCED FUNCTIONAL MATERIALS (2022):10. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment