IMR OpenIR
Multifunctional Ti3AlC2-Based Composites via Fused Filament Fabrication and 3D Printing Technology
Liu, Dongyan1; Hentschel, Lukas2; Lin, Guoming1; Kukla, Christian3; Schuschnigg, Stephan2; Ma, Na1; Wallis, Christopher4; Momeni, Vahid2; Kitzmantel, Michael4; Sui, Guoxin1
通讯作者Kukla, Christian(christian.kukla@unileoben.ac.at)
2023-04-25
发表期刊JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
ISSN1059-9495
页码8
摘要MAX phase, as a group of layered ternary carbides and nitrides exhibiting combined properties of metallic and ceramic materials, attracts increasing interest because they own exceptionally chemical, physical, electrical, thermal, and mechanical properties. In the present paper, a novel Ti3AlC2-based green part was manufactured by extrusion-based fused filament fabrication (FFF) and 3D printing technologies. The morphology, thermal/electrical conductivity, thermal stability, electromagnetic interference (EMI) shielding effectiveness (SE), and mechanical properties of Ti3AlC2/binder with the volume ratio of 1:1 were investigated. The tensile and compressive strengths and elongation are measured to be 8.29 MPa and 18.20%, 44.90 MPa and 33.76%, respectively. The morphology of the filament reveals that Ti3AlC2 powders are well bonded by the thermoplastic binder. More importantly, the composite shows good thermal and electrical conductivities together with the excellent EMI shielding effectiveness, which is of great potential in the practical applications as conductor, heat dissipating, anti-static, and EMI shielding materials. The successful fabrication of Ti3AlC2-based composites via FFF-based 3D printing technology is beneficial to develop other MAX phase products with complex geometries and additional functionalities.
关键词3D printing additive manufacturing fused filament fabrication (FFF) MAX phase Ti3AlC2
资助者Bureau of International Cooperation Chinese Academy Science (Austrian-Chinese Cooperative RTD Project) ; Austrian Research Promotion Agency (FFG) under the program Production of the Future
DOI10.1007/s11665-023-08207-7
收录类别SCI
语种英语
资助项目Bureau of International Cooperation Chinese Academy Science (Austrian-Chinese Cooperative RTD Project)[GJHZ2045] ; Austrian Research Promotion Agency (FFG) under the program Production of the Future[875650]
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:000978944200002
出版者SPRINGER
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/177546
专题中国科学院金属研究所
通讯作者Kukla, Christian
作者单位1.Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China
2.Univ Leoben, Inst Polymer Proc, A-8700 Leoben, Austria
3.Univ Leoben, Ind Liaison Dept, A-8700 Leoben, Austria
4.RHP Technol GmbH, Austrian Res Ctr, A-2444 Seibersdorf, Austria
推荐引用方式
GB/T 7714
Liu, Dongyan,Hentschel, Lukas,Lin, Guoming,et al. Multifunctional Ti3AlC2-Based Composites via Fused Filament Fabrication and 3D Printing Technology[J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE,2023:8.
APA Liu, Dongyan.,Hentschel, Lukas.,Lin, Guoming.,Kukla, Christian.,Schuschnigg, Stephan.,...&Sui, Guoxin.(2023).Multifunctional Ti3AlC2-Based Composites via Fused Filament Fabrication and 3D Printing Technology.JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE,8.
MLA Liu, Dongyan,et al."Multifunctional Ti3AlC2-Based Composites via Fused Filament Fabrication and 3D Printing Technology".JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE (2023):8.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Dongyan]的文章
[Hentschel, Lukas]的文章
[Lin, Guoming]的文章
百度学术
百度学术中相似的文章
[Liu, Dongyan]的文章
[Hentschel, Lukas]的文章
[Lin, Guoming]的文章
必应学术
必应学术中相似的文章
[Liu, Dongyan]的文章
[Hentschel, Lukas]的文章
[Lin, Guoming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。