IMR OpenIR
Enhanced fatigue endurance limit of Cu through low-angle dislocation boundary
Pan, Qingsong; Jing, Lijun; Lu, Lei
通讯作者Lu, Lei(llu@imr.ac.cn)
2023
发表期刊ACTA MATERIALIA
ISSN1359-6454
卷号244页码:10
摘要How to remarkably elevate the high-cycle fatigue resistance of metallic materials under cyclic loading is a crucial, yet technically challenging issue for major structural applications. Either traditional strengthening ap-proaches or newly-developed hierarchical nanostructural modifications has been demonstrated to usually display a limited ability of enhancing the 107-cycle fatigue endurance limit. Here, we introduce massive nano-scaled low-angle dislocation boundaries in coarse grained pure Cu by means of simple drawing process, not only enhancing the tensile strength obviously, but also imparting a fatigue limit as high as 130 MPa and a fatigue ratio of 0.35, which is a record for pure Cu. Upon cyclic loading, the extensive activation of strongly confined dislocation slip within homogeneous dislocation cells (with cell size of about 300 nm) effectively mediates cyclic plastic strain with slightly cyclic softening. The elevated stress resistance of DC Cu to cyclic loading is primarily attributed to the high density of built-in low-angle dislocation cells, which are strong and also suppress local surface roughening and crack initiation, thereby contributing to an enhanced fatigue life.
关键词Low-angle dislocation boundary Fatigue limit Cyclic deformation Surface roughening Cu
资助者National Science Foundation of China (NSFC) ; Key Research Program of Frontier Science and International Partnership Program ; IMR Innovation Fund ; Youth Innovation Promotion Association, Chinese Academy of Sciences
DOI10.1016/j.actamat.2022.118542
收录类别SCI
语种英语
资助项目National Science Foundation of China (NSFC)[51931010] ; National Science Foundation of China (NSFC)[92163202] ; National Science Foundation of China (NSFC)[52122104] ; National Science Foundation of China (NSFC)[52071321] ; Key Research Program of Frontier Science and International Partnership Program[GJHZ2029] ; IMR Innovation Fund[2022-ZD02] ; Youth Innovation Promotion Association, Chinese Academy of Sciences[2019196]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:000982515400001
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/177579
专题中国科学院金属研究所
通讯作者Lu, Lei
作者单位Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Pan, Qingsong,Jing, Lijun,Lu, Lei. Enhanced fatigue endurance limit of Cu through low-angle dislocation boundary[J]. ACTA MATERIALIA,2023,244:10.
APA Pan, Qingsong,Jing, Lijun,&Lu, Lei.(2023).Enhanced fatigue endurance limit of Cu through low-angle dislocation boundary.ACTA MATERIALIA,244,10.
MLA Pan, Qingsong,et al."Enhanced fatigue endurance limit of Cu through low-angle dislocation boundary".ACTA MATERIALIA 244(2023):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pan, Qingsong]的文章
[Jing, Lijun]的文章
[Lu, Lei]的文章
百度学术
百度学术中相似的文章
[Pan, Qingsong]的文章
[Jing, Lijun]的文章
[Lu, Lei]的文章
必应学术
必应学术中相似的文章
[Pan, Qingsong]的文章
[Jing, Lijun]的文章
[Lu, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。