IMR OpenIR
Machine learning-based crystal structure prediction for high-entropy oxide ceramics
Liu, Jicheng1; Wang, Anzhe1,2,3,6; Gao, Pan1; Bai, Rui1; Liu, Junjie1; Du, Bin4; Fang, Cheng5
通讯作者Wang, Anzhe(wanganzhe14b@126.com)
2023-11-02
发表期刊JOURNAL OF THE AMERICAN CERAMIC SOCIETY
ISSN0002-7820
页码11
摘要Predicting the crystal structure is essential to address the reliance on serendipity for facilitating the discovery and design of high-performance high-entropy oxides (HEOs). Here, three classic algorithms-based machine learning models to predict the crystal structure of HEOs are successfully established and analyzed by combining five metrics, and the XGBoost classifier shows excellent accuracy and robustness with ACC and F1 scores up to 0.977 and 0.975, respectively. SHAP summary plot indicates that the anion-to-cation radius ratio (rA/rC) has the greatest impact on crystal structure, followed by difference in Pauling and Mulliken electronegativities (Delta chi Pauling and Delta chi Mulliken). It is noteworthy that the rA/rC, Delta chi Pauling, and Delta chi Mulliken lower than 0.35, 0.1, and 0.2, respectively, tend to lead to a fluorite crystal structure, whereas rock-salt and spinel crystal structures are always formed. This work is expected to facilitate the discovery and design of HEOs with tailorable crystal structures and properties.
关键词crystals/crystallization machine learning modeling/model oxides
资助者Financial support was provided by the National Natural Science Foundation of China (no. 52302066), the Natural Science Foundation of Jiangsu Province (no. BK20201040), the Opening Project of the State Key Laboratory of Refractories and Metallurgy (Wuhan Un ; National Natural Science Foundation of China ; Natural Science Foundation of Jiangsu Province ; Opening Project of the State Key Laboratory of Refractories and Metallurgy (Wuhan University of Science and Technology) ; Jiangsu Studentsapos; Project for Innovation and Entrepreneurship Training Program ; Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology
DOI10.1111/jace.19518
收录类别SCI
语种英语
资助项目Financial support was provided by the National Natural Science Foundation of China (no. 52302066), the Natural Science Foundation of Jiangsu Province (no. BK20201040), the Opening Project of the State Key Laboratory of Refractories and Metallurgy (Wuhan Un[52302066] ; National Natural Science Foundation of China[BK20201040] ; Natural Science Foundation of Jiangsu Province[G202301] ; Opening Project of the State Key Laboratory of Refractories and Metallurgy (Wuhan University of Science and Technology)[202311276017Z] ; Jiangsu Studentsapos; Project for Innovation and Entrepreneurship Training Program[ASMA202108] ; Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology
WOS研究方向Materials Science
WOS类目Materials Science, Ceramics
WOS记录号WOS:001091552100001
出版者WILEY
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/177789
专题中国科学院金属研究所
通讯作者Wang, Anzhe
作者单位1.Nanjing Inst Technol, Sch Mat Sci & Engn, Nanjing, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang, Peoples R China
3.Shenzhen Polytech, Inst Intelligent Mfg Technol, Shenzhen, Peoples R China
4.Guangzhou Univ, Sch Phys & Mat Sci, Guangzhou, Peoples R China
5.Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou, Peoples R China
6.Nanjing Inst Technol, Sch Mat Sci & Engn, Nanjing 211167, Peoples R China
推荐引用方式
GB/T 7714
Liu, Jicheng,Wang, Anzhe,Gao, Pan,et al. Machine learning-based crystal structure prediction for high-entropy oxide ceramics[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,2023:11.
APA Liu, Jicheng.,Wang, Anzhe.,Gao, Pan.,Bai, Rui.,Liu, Junjie.,...&Fang, Cheng.(2023).Machine learning-based crystal structure prediction for high-entropy oxide ceramics.JOURNAL OF THE AMERICAN CERAMIC SOCIETY,11.
MLA Liu, Jicheng,et al."Machine learning-based crystal structure prediction for high-entropy oxide ceramics".JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2023):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Jicheng]的文章
[Wang, Anzhe]的文章
[Gao, Pan]的文章
百度学术
百度学术中相似的文章
[Liu, Jicheng]的文章
[Wang, Anzhe]的文章
[Gao, Pan]的文章
必应学术
必应学术中相似的文章
[Liu, Jicheng]的文章
[Wang, Anzhe]的文章
[Gao, Pan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。