IMR OpenIR
Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors
Zhao, Jinbin1,2; Wang, Jiantao2,3; He, Dongchang2,3; Li, Junlin1; Sun, Yan2; Chen, Xing-Qiu2; Liu, Peitao2
通讯作者Chen, Xing-Qiu(xingqiu.chen@imr.ac.cn) ; Liu, Peitao(ptliu@imr.ac.cn)
2024-10-01
发表期刊ACTA METALLURGICA SINICA
ISSN0412-1961
卷号60期号:10页码:1418-1428
摘要The discovery of hydride superconductors with high critical transition temperature (T-c) un der high pressures has received considerable interest in developing superconducting materials that can operate at room temperature and ambient pressure. Although first-principles methods can accurately predict the critical temperature of hydride superconductors, the computational demands are significant because of the expensive calculation of electron- phonon coupling. Hence, constructing an accurate and efficient model for predicting T-c is highly desirable. In this study, a simple and interpretable machine learning (ML) model was developed using the random forest algorithm, which enables the selection of important features based on their importance. Using four physics-based features, namely, the standard deviation of the number of valence electrons, mean covalent radii, range of the Mendeleev number of constituent elements, and hydrogen fraction of the total density of states at the Fermi energy, the optimal ML model achieves high accuracy, with a mean absolute error of 24.3 K and a root-mean-square error of 33.6 K. The ML model developed in this study shows great application potential for high-throughput screening, thereby expediting the discovery of high-T-c superconducting hydrides.
关键词hydride superconductor superconducting transition temperature machine learning random forest first-principles calculation
资助者National Natural Science Foundation of China ; National Key Research and Development Program of China ; Key Research Program of Chinese Academy of Sciences
DOI10.11900/0412.1961.2024.00140
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[52188101] ; National Natural Science Foundation of China[52201030] ; National Key Research and Development Program of China[2021YFB3501503] ; Key Research Program of Chinese Academy of Sciences
WOS研究方向Metallurgy & Metallurgical Engineering
WOS类目Metallurgy & Metallurgical Engineering
WOS记录号WOS:001334426200010
出版者SCIENCE PRESS
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/179733
专题中国科学院金属研究所
通讯作者Chen, Xing-Qiu; Liu, Peitao
作者单位1.Taiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
3.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Jinbin,Wang, Jiantao,He, Dongchang,et al. Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors[J]. ACTA METALLURGICA SINICA,2024,60(10):1418-1428.
APA Zhao, Jinbin.,Wang, Jiantao.,He, Dongchang.,Li, Junlin.,Sun, Yan.,...&Liu, Peitao.(2024).Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors.ACTA METALLURGICA SINICA,60(10),1418-1428.
MLA Zhao, Jinbin,et al."Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors".ACTA METALLURGICA SINICA 60.10(2024):1418-1428.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Jinbin]的文章
[Wang, Jiantao]的文章
[He, Dongchang]的文章
百度学术
百度学术中相似的文章
[Zhao, Jinbin]的文章
[Wang, Jiantao]的文章
[He, Dongchang]的文章
必应学术
必应学术中相似的文章
[Zhao, Jinbin]的文章
[Wang, Jiantao]的文章
[He, Dongchang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。