IMR OpenIR
Orientation-modulated exchange coupling in La0.67Ca0.33MnO3/CaMnO3 bilayer films
Wang, F.; Bai, Y.; Liu, W.; Zhang, H. R.; Li, S. K.; Dai, Z. M.; Ma, S.; Zhao, X. G.; Wang, S. C.; Wang, Z. J.; Zhang, Z. D.; Liu, W (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China.
2017-04-15
发表期刊JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
ISSN0304-8853
卷号428页码:372-376
摘要Epitaxial La0.67Ca0.33MnO3/CaMnO3 (LCMO/CMO) bilayers and the reference single layers were deposited by pulsed laser deposition on (001)-and (110)-oriented SrTiO3 (STO) substrates, allowing us to perform a detailed study of the dependence of exchange coupling on crystal orientations. It is found that the exchange bias (coercive) field of the (110)-oriented LCMO/CMO bilayer are decreased (increased) compared to that of (001)oriented bilayer, due to the enhanced (weakened) Mn3+-Mn4+ ferromagnetic double-exchange interaction of LCMO layer. It is clear that the spin flop coupling that leads to the enhanced coercivity and the spin glass state that results in the exchange bias effect can coexist and are determined by the competition between Mn3+-Mn4+ ferromagnetic double-exchange and Mn4+-Mn4+ antiferromagnetic super-exchange interactions at the interface. We propose that strong Mn3+-Mn4+ ferromagnetic double-exchange interaction facilitates the existence of spin flop coupling, not the formation of spin glass state at the LCMO/CMO interface.; Epitaxial La0.67Ca0.33MnO3/CaMnO3 (LCMO/CMO) bilayers and the reference single layers were deposited by pulsed laser deposition on (001)-and (110)-oriented SrTiO3 (STO) substrates, allowing us to perform a detailed study of the dependence of exchange coupling on crystal orientations. It is found that the exchange bias (coercive) field of the (110)-oriented LCMO/CMO bilayer are decreased (increased) compared to that of (001)oriented bilayer, due to the enhanced (weakened) Mn3+-Mn4+ ferromagnetic double-exchange interaction of LCMO layer. It is clear that the spin flop coupling that leads to the enhanced coercivity and the spin glass state that results in the exchange bias effect can coexist and are determined by the competition between Mn3+-Mn4+ ferromagnetic double-exchange and Mn4+-Mn4+ antiferromagnetic super-exchange interactions at the interface. We propose that strong Mn3+-Mn4+ ferromagnetic double-exchange interaction facilitates the existence of spin flop coupling, not the formation of spin glass state at the LCMO/CMO interface.
部门归属[wang, f. ; bai, y. ; liu, w. ; li, s. k. ; dai, z. m. ; ma, s. ; zhao, x. g. ; wang, s. c. ; wang, z. j. ; zhang, z. d.] chinese acad sci, shenyang natl lab mat sci, inst met res, 72 wenhua rd, shenyang 110016, peoples r china ; [zhang, h. r.] chinese acad sci, inst phys, beijing natl lab condensed matter, beijing 100190, peoples r china
关键词Spin Glass State Exchange Coupling Spin Flop Coupling Exchange Bias
学科领域Materials Science, Multidisciplinary ; Physics, Condensed Matter
资助者National Nature Science Foundation of China [51331006, 51590883, 51271177]; Chinese Academy of Sciences [KJZD-EW-M05-3]
收录类别SCI
语种英语
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/78183
专题中国科学院金属研究所
通讯作者Liu, W (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China.
推荐引用方式
GB/T 7714
Wang, F.,Bai, Y.,Liu, W.,et al. Orientation-modulated exchange coupling in La0.67Ca0.33MnO3/CaMnO3 bilayer films[J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2017,428:372-376.
APA Wang, F..,Bai, Y..,Liu, W..,Zhang, H. R..,Li, S. K..,...&Liu, W .(2017).Orientation-modulated exchange coupling in La0.67Ca0.33MnO3/CaMnO3 bilayer films.JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,428,372-376.
MLA Wang, F.,et al."Orientation-modulated exchange coupling in La0.67Ca0.33MnO3/CaMnO3 bilayer films".JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 428(2017):372-376.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, F.]的文章
[Bai, Y.]的文章
[Liu, W.]的文章
百度学术
百度学术中相似的文章
[Wang, F.]的文章
[Bai, Y.]的文章
[Liu, W.]的文章
必应学术
必应学术中相似的文章
[Wang, F.]的文章
[Bai, Y.]的文章
[Liu, W.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。