IMR OpenIR
Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding
Sun, Renhui; Zhang, Hao-Bin; Liu, Ji; Xie, Xi; Yang, Rui; Li, Yue; Hong, Song; Yu, Zhong-Zhen; Zhang, HB; Yu, ZZ (reprint author), Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China.
2017-12-01
Source PublicationWILEY-V C H VERLAG GMBH
ISSN1616-301X
Volume27Issue:45Pages:-
AbstractHighly conductive polymer nanocomposites are greatly desired for electromagnetic interference (EMI) shielding applications. Although transition metal carbide/carbonitride (MXene) has shown its huge potential for producing highly conductive films and bulk materials, it still remains a great challenge to fabricate extremely conductive polymer nanocomposites with outstanding EMI shielding performance at minimal amounts of MXenes. Herein, an electrostatic assembly approach for fabricating highly conductive MXene@polystyrene nanocomposites by electrostatic assembling of negative MXene nanosheets on positive polystyrene microspheres is demonstrated, followed by compression molding. Thanks to the high conductivity of MXenes and their highly efficient conducting network within polystyrene matrix, the resultant nanocomposites exhibit not only a low percolation threshold of 0.26 vol% but also a superb conductivity of 1081 S m(-1) and an outstanding EMI shielding performance of >54 dB over the whole X-band with a maximum of 62 dB at the low MXene loading of 1.90 vol%, which are among the best performances for electrically conductive polymer nanocomposites by far. Moreover, the same nanocomposite has a highly enhanced storage modulus, 54% and 56% higher than those of neat polystyrene and conventional MXene@polystyrene nanocomposite, respectively. This work provides a novel methodology to produce highly conductive polymer nanocomposites for highly efficient EMI shielding applications.; Highly conductive polymer nanocomposites are greatly desired for electromagnetic interference (EMI) shielding applications. Although transition metal carbide/carbonitride (MXene) has shown its huge potential for producing highly conductive films and bulk materials, it still remains a great challenge to fabricate extremely conductive polymer nanocomposites with outstanding EMI shielding performance at minimal amounts of MXenes. Herein, an electrostatic assembly approach for fabricating highly conductive MXene@polystyrene nanocomposites by electrostatic assembling of negative MXene nanosheets on positive polystyrene microspheres is demonstrated, followed by compression molding. Thanks to the high conductivity of MXenes and their highly efficient conducting network within polystyrene matrix, the resultant nanocomposites exhibit not only a low percolation threshold of 0.26 vol% but also a superb conductivity of 1081 S m(-1) and an outstanding EMI shielding performance of >54 dB over the whole X-band with a maximum of 62 dB at the low MXene loading of 1.90 vol%, which are among the best performances for electrically conductive polymer nanocomposites by far. Moreover, the same nanocomposite has a highly enhanced storage modulus, 54% and 56% higher than those of neat polystyrene and conventional MXene@polystyrene nanocomposite, respectively. This work provides a novel methodology to produce highly conductive polymer nanocomposites for highly efficient EMI shielding applications.
description.department[sun, renhui ; zhang, hao-bin ; liu, ji ; yu, zhong-zhen] beijing univ chem technol, coll mat sci & engn, state key lab organ inorgan composites, beijing 100029, peoples r china ; [sun, renhui] handan purificat equipment res inst, handan 056027, peoples r china ; [xie, xi ; yang, rui] chinese acad sci, inst met res, shenyang 110016, liaoning, peoples r china ; [hong, song] beijing univ chem technol, anal & test ctr, beijing 100029, peoples r china
KeywordElectromagnetic Interference Shielding Electrical Conductivity Mxene Nanocomposites Polystyrene
Subject AreaChemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
Funding OrganizationNational Natural Science Foundation of China [51673015, 51373011, 51533001]; Fundamental Research Funds for the Central Universities [YS201402]
Indexed BySCI
Language英语
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/78949
Collection中国科学院金属研究所
Corresponding AuthorZhang, HB; Yu, ZZ (reprint author), Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China.
Recommended Citation
GB/T 7714
Sun, Renhui,Zhang, Hao-Bin,Liu, Ji,et al. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding[J]. WILEY-V C H VERLAG GMBH,2017,27(45):-.
APA Sun, Renhui.,Zhang, Hao-Bin.,Liu, Ji.,Xie, Xi.,Yang, Rui.,...&Yu, ZZ .(2017).Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding.WILEY-V C H VERLAG GMBH,27(45),-.
MLA Sun, Renhui,et al."Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding".WILEY-V C H VERLAG GMBH 27.45(2017):-.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Sun, Renhui]'s Articles
[Zhang, Hao-Bin]'s Articles
[Liu, Ji]'s Articles
Baidu academic
Similar articles in Baidu academic
[Sun, Renhui]'s Articles
[Zhang, Hao-Bin]'s Articles
[Liu, Ji]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Sun, Renhui]'s Articles
[Zhang, Hao-Bin]'s Articles
[Liu, Ji]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.