IMR OpenIR
Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt
Shao, C. W.; Zhang, P.; Zhang, Z. J.; Liu, R.; Zhang, Z. F.; Zhang, P (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.
2017-12-01
Source PublicationSPRINGER
ISSN1073-5623
Volume48AIssue:12Pages:5833-5848
AbstractWe find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress-strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation-dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.; We find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress-strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation-dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.
description.department[shao, c. w. ; zhang, p. ; zhang, z. j. ; liu, r. ; zhang, z. f.] chinese acad sci, inst met res, shenyang natl lab mat sci, shenyang 110016, liaoning, peoples r china ; [shao, c. w.] univ chinese acad sci, beijing 100049, peoples r china
Subject AreaMaterials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
Funding OrganizationNational Natural Science Foundation of China (NSFC) [51301179, 51331007, 51501198]
Indexed BySCI
Language英语
WOS IDWOS:000415796400009
Citation statistics
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/78955
Collection中国科学院金属研究所
Corresponding AuthorZhang, P (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China.
Recommended Citation
GB/T 7714
Shao, C. W.,Zhang, P.,Zhang, Z. J.,et al. Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt[J]. SPRINGER,2017,48A(12):5833-5848.
APA Shao, C. W.,Zhang, P.,Zhang, Z. J.,Liu, R.,Zhang, Z. F.,&Zhang, P .(2017).Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt.SPRINGER,48A(12),5833-5848.
MLA Shao, C. W.,et al."Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt".SPRINGER 48A.12(2017):5833-5848.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Shao, C. W.]'s Articles
[Zhang, P.]'s Articles
[Zhang, Z. J.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Shao, C. W.]'s Articles
[Zhang, P.]'s Articles
[Zhang, Z. J.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Shao, C. W.]'s Articles
[Zhang, P.]'s Articles
[Zhang, Z. J.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.