Advanced   Register
IMR OpenIR  > 中国科学院金属研究所  > 期刊论文

题名: History-independent cyclic response of nanotwinned metals
作者: Pan, Qingsong;  Zhou, Haofei;  Lu, Qiuhong;  Gao, Huajian;  Lu, Lei
发表日期: 2017-11-9
摘要: Nearly 90 per cent of service failures of metallic components and structures are caused by fatigue at cyclic stress amplitudes much lower than the tensile strength of the materials involved(1). Metals typically suffer from large amounts of cumulative, irreversible damage to microstructure during cyclic deformation, leading to cyclic responses that are unstable (hardening or softening)(2-4) and history-dependent(5-8). Existing rules for fatigue life prediction, such as the linear cumulative damage rule(1,9), cannot account for the effect of loading history, and engineering components are often loaded by complex cyclic stresses with variable amplitudes, mean values and frequencies(10,11), such as aircraft wings in turbulent air. It is therefore usually extremely challenging to predict cyclic behaviour and fatigue life under a realistic load spectrum(1,11). Here, through both atomistic simulations and variable-strain-amplitude cyclic loading experiments at stress amplitudes lower than the tensile strength of the metal, we report a history-independent and stable cyclic response in bulk copper samples that contain highly oriented nanoscale twins. We demonstrate that this unusual cyclic behaviour is governed by a type of correlated 'necklace' dislocation consisting of multiple short component dislocations in adjacent twins, connected like the links of a necklace. Such dislocations are formed in the highly oriented nanotwinned structure under cyclic loading and help to maintain the stability of twin boundaries and the reversible damage, provided that the nanotwins are tilted within about 15 degrees of the loading axis. This cyclic deformation mechanism is distinct from the conventional strain localizing mechanisms associated with irreversible microstructural damage in single-crystal(12,13), coarsegrained(1,14), ultrafine-grained and nanograined metals(4,15,16).
刊名: NATURE PUBLISHING GROUP
Appears in Collections:中国科学院金属研究所_期刊论文

Files in This Item:

There are no files associated with this item.




Recommended Citation:
Pan, Qingsong,Zhou, Haofei,Lu, Qiuhong,et al. History-independent Cyclic Response Of Nanotwinned Metals[J]. Nature Publishing Group,2017,551(7679):214-+.

SCI Citaion Data:
Service
 Recommend this item
 Sava as my favorate item
 Show this item's statistics
 Export Endnote File
Google Scholar
 Similar articles in Google Scholar
 [Pan, Qingsong]'s Articles
 [Zhou, Haofei]'s Articles
 [Lu, Qiuhong]'s Articles
CSDL cross search
 Similar articles in CSDL Cross Search
 [Pan, Qingsong]‘s Articles
 [Zhou, Haofei]‘s Articles
 [Lu, Qiuhong]‘s Articles
Scirus search
 Similar articles in Scirus
Related Copyright Policies
Null
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to Del.icio.us  Add to Digg  Add to Reddit 
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2018  中国科学院金属研究所  -Feedback
Powered by CSpace