Advanced   Register
IMR OpenIR  > 中国科学院金属研究所  > 期刊论文

题名: Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: In vitro simulation of the bone-repairing effect of Mg-based alloy implant
作者: Zhang, Xiuzhi;  Zu, Haiyue;  Zhao, Dewei;  Yang, Ke;  Tian, Simiao;  Yu, Xiaoming;  Lu, Faqiang;  Liu, Baoyi;  Yu, Xiaobing;  Wang, Benjie;  Wang, Wei;  Huang, Shibo;  Wang, Yongxuan;  Wang, Zihua;  Zhang, Zhaodong
发表日期: 2017-11-1
摘要: Mg-based alloys, as the potential orthopaedic implant, can self-degrade to avoid second operation for its remove, and enable to promote bone repair; however, the underlying molecular mechanisms remain unclear. In the present study, we examined the effect of Mg ions on osteogenesis, chemotaxis and anti-alkaline stress in hFOB1.19 human osteoblast cells to simulate bone-repairing effect of a biodegradable Mg-based alloy implant in vitro, and explored the regulatory role of the transient receptor potential melastatin 7 (TRPM7)/phosphoinositide 3-kinase (PI3K) signalling pathway in the process of Mg ion induced bone repair by knockdown of TRPM7 and antagonizing PI3K activity. Results indicate that Mg ions up-regulated the expression of Runx2 and alkaline phosphatase (ALP) through TRPM7/PI3K signalling pathway, which could significantly enhance the osteogenic activity of human osteoblasts. Furthermore, the expression levels of MMP2, MMP9 and vascular endothelial growth factor (VEGF) were increased by TRPM7/PI3K signalling pathway, which recruits osteoblasts from low- to high-Mg ion environments by inducing cell migration. Although an alkaline environment has antibacterial effects, alkaline stress can cause cytotoxicity and induce cell death. Finally, we found that Mg ions could activate PI3K phosphorylation to promote cell growth and survival, protecting cells against the alkaline-stress induced cytotoxicity caused by the degradation of Mg-based alloy implants. Our study not only revealed the molecular mechanism of Mg in promoting bone repair but also explained the protective effects of Mg ions on osteoblasts in an alkaline environment, which provides a theoretical basis and new directions for the application of Mg-based alloy implant material in orthopaedics fixations and osteosarcoma treatment. Statements of Significance As a potential biomaterial for orthopaedic implant, biodegradable magnesium has several advantages including self-degradation and bone repair promotion; however, the underlying mechanisms and effective concentration by which molecular regulates the bone repair remain unclear. The present study revealed that Mg ion and its effective concentration for activating PI3K phosphorylation via TRPM7, which causes three processes affecting bone repair, namely, osteoblast recruitment, osteogenesis and resistance to alkaline stress in human osteoblast. Therefore, our results have provided insight into the underlying molecular biological basis, and guidance for manipulating degradation rate, such as surface modification, of orthopaedic Mg-based implants. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
刊名: ELSEVIER SCI LTD
Appears in Collections:中国科学院金属研究所_期刊论文

Files in This Item:

There are no files associated with this item.




Recommended Citation:
Zhang, Xiuzhi,Zu, Haiyue,Zhao, Dewei,et al. Ion Channel Functional Protein Kinase Trpm7 Regulates Mg Ions To Promote The Osteoinduction Of Human Osteoblast Via Pi3k Pathway: In Vitro Simulation Of The Bone-repairing Effect Of Mg-based Alloy Implant[J]. Elsevier Sci Ltd,2017,63:369-382.

SCI Citaion Data:
Service
 Recommend this item
 Sava as my favorate item
 Show this item's statistics
 Export Endnote File
Google Scholar
 Similar articles in Google Scholar
 [Zhang, Xiuzhi]'s Articles
 [Zu, Haiyue]'s Articles
 [Zhao, Dewei]'s Articles
CSDL cross search
 Similar articles in CSDL Cross Search
 [Zhang, Xiuzhi]‘s Articles
 [Zu, Haiyue]‘s Articles
 [Zhao, Dewei]‘s Articles
Scirus search
 Similar articles in Scirus
Related Copyright Policies
Null
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to Del.icio.us  Add to Digg  Add to Reddit 
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2018  中国科学院金属研究所  -Feedback
Powered by CSpace