IMR OpenIR
New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions
Cui, Lan-Yue; Hu, Yan; Zeng, Rong-Chang; Yang, Yong-Xin; Sun, Dan-Dan; Li, Shuo-Qi; Zhang, Fen; Han, En-Hou; Zeng, RC (reprint author), Shandong Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266590, Peoples R China.
2017-09-01
发表期刊JOURNAL MATER SCI TECHNOL
ISSN1005-0302
卷号33期号:9页码:971-986
摘要In vitro degradation is an important approach to screening appropriate biomedical magnesium (Mg) alloys at low cost. However, corrosion products deposited on Mg alloys exert a critical impact on corrosion resistance. There are no acceptable criteria on the evaluation on degradation rate of Mg alloys. Understanding the degradation behavior of Mg alloys in presence of Tris buffer is necessary. An investigation was made to compare the influence of Tris-HCl and Tris on the corrosion behavior of Mg alloy AZ31 in the presence of various anions of simulated body fluids via hydrogen evolution, pH value and electrochemical tests. The results demonstrated that the Tris-HCl buffer resulted in general corrosion due to the inhibition of the formation of corrosion products and thus increased the corrosion rate of the AZ31 alloy. Whereas Tris gave rise to pitting corrosion or general corrosion due to the fact that the hydrolysis of the amino-group of Tris led to an increase in solution pH value, and promoted the formation of corrosion products and thus a significant reduction in corrosion rate. In addition, the corrosion mechanisms in the presence of Tris-HCl and Tris were proposed. Tris-HCl as a buffer prevented the formation of precipitates of HCO3-, SO42-, HPO42- and H2PO4- ions during the corrosion of the AZ31 alloy due to its lower buffering pH value (x. x). Thus, both the hydrogen evolution rate and corrosion current density of the alloy were approximately one order of magnitude higher in presence of Tris-HCl than Tris and Tris-free saline solutions. (C) 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.; In vitro degradation is an important approach to screening appropriate biomedical magnesium (Mg) alloys at low cost. However, corrosion products deposited on Mg alloys exert a critical impact on corrosion resistance. There are no acceptable criteria on the evaluation on degradation rate of Mg alloys. Understanding the degradation behavior of Mg alloys in presence of Tris buffer is necessary. An investigation was made to compare the influence of Tris-HCl and Tris on the corrosion behavior of Mg alloy AZ31 in the presence of various anions of simulated body fluids via hydrogen evolution, pH value and electrochemical tests. The results demonstrated that the Tris-HCl buffer resulted in general corrosion due to the inhibition of the formation of corrosion products and thus increased the corrosion rate of the AZ31 alloy. Whereas Tris gave rise to pitting corrosion or general corrosion due to the fact that the hydrolysis of the amino-group of Tris led to an increase in solution pH value, and promoted the formation of corrosion products and thus a significant reduction in corrosion rate. In addition, the corrosion mechanisms in the presence of Tris-HCl and Tris were proposed. Tris-HCl as a buffer prevented the formation of precipitates of HCO3-, SO42-, HPO42- and H2PO4- ions during the corrosion of the AZ31 alloy due to its lower buffering pH value (x. x). Thus, both the hydrogen evolution rate and corrosion current density of the alloy were approximately one order of magnitude higher in presence of Tris-HCl than Tris and Tris-free saline solutions. (C) 2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
部门归属[cui, lan-yue ; hu, yan ; zeng, rong-chang ; yang, yong-xin ; sun, dan-dan ; li, shuo-qi ; zhang, fen] shandong univ sci & technol, coll mat sci & engn, qingdao 266590, peoples r china ; [cui, lan-yue ; hu, yan ; zeng, rong-chang ; yang, yong-xin ; li, shuo-qi ; zhang, fen] shandong univ sci & technol, state key lab min disaster prevent & control cofo, qingdao 266590, peoples r china ; [cui, lan-yue ; hu, yan ; zeng, rong-chang ; yang, yong-xin ; li, shuo-qi ; zhang, fen] shandong univ sci & technol, minist sci & technol, qingdao 266590, peoples r china ; [han, en-hou] chinese acad sci, inst met res, natl engn ctr corros control, shenyang 110016, liaoning, peoples r china
关键词Magnesium Alloy Biomaterials Tris Buffer Corrosion
学科领域Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
资助者National Natural Science Foundation of China [51241001, 51571134]; SDUST Research Fund [2014TDJH104]; Joint Innovative Centre for Safe and Effective Mining Technology and Equipment of Coal Resources, Shandong Province
收录类别SCI
语种英语
WOS记录号WOS:000410668400009
引用统计
被引频次:52[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/79117
专题中国科学院金属研究所
通讯作者Zeng, RC (reprint author), Shandong Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266590, Peoples R China.
推荐引用方式
GB/T 7714
Cui, Lan-Yue,Hu, Yan,Zeng, Rong-Chang,et al. New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions[J]. JOURNAL MATER SCI TECHNOL,2017,33(9):971-986.
APA Cui, Lan-Yue.,Hu, Yan.,Zeng, Rong-Chang.,Yang, Yong-Xin.,Sun, Dan-Dan.,...&Zeng, RC .(2017).New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions.JOURNAL MATER SCI TECHNOL,33(9),971-986.
MLA Cui, Lan-Yue,et al."New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions".JOURNAL MATER SCI TECHNOL 33.9(2017):971-986.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cui, Lan-Yue]的文章
[Hu, Yan]的文章
[Zeng, Rong-Chang]的文章
百度学术
百度学术中相似的文章
[Cui, Lan-Yue]的文章
[Hu, Yan]的文章
[Zeng, Rong-Chang]的文章
必应学术
必应学术中相似的文章
[Cui, Lan-Yue]的文章
[Hu, Yan]的文章
[Zeng, Rong-Chang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。