Knowledge Management System Of Institute of metal research,CAS
Advancements in three-dimensional titanium alloy mesh scaffolds fabricated by electron beam melting for biomedical devices: mechanical and biological aspects | |
Nune, KC; Li, SJ; Misra, RDK; Misra, RDK (reprint author), Univ Texas El Paso, Mat & Biomed Engn Dept, Biomaterials Sci & Engn Lab Met, El Paso, TX 79968 USA. | |
2018-04-01 | |
Source Publication | SCIENCE CHINA-MATERIALS
![]() |
ISSN | 2095-8226 |
Volume | 61Issue:4Pages:455-474 |
Abstract | We elucidate here the process-structure-property relationships in three-dimensional (3D) implantable titanium alloy biomaterials processed by electron beam melting (EBM) that is based on the principle of additive manufacturing. The conventional methods for processing of biomedical devices including freeze casting and sintering are limited because of the difficulties in adaptation at the host site and difference in the micro/macrostructure, mechanical, and physical properties with the host tissue. In this regard, EBM has a unique advantage of processing patient-specific complex designs, which can be either obtained from the computed tomography (CT) scan of the defect site or through a computeraided design (CAD) program. This review introduces and summarizes the evolution and underlying reasons that have motivated 3D printing of scaffolds for tissue regeneration. The overview comprises of two parts for obtaining ultimate functionalities. The first part focuses on obtaining the ultimate functionalities in terms of mechanical properties of 3D titanium alloy scaffolds fabricated by EBM with different characteristics based on design, unit cell, processing parameters, scan speed, porosity, and heat treatment. The second part focuses on the advancement of enhancing biological responses of these 3D scaffolds and the influence of surface modification on cell-material interactions. The overview concludes with a discussion on the clinical trials of these 3D porous scaffolds illustrating their potential in meeting the current needs of the biomedical industry.; We elucidate here the process-structure-property relationships in three-dimensional (3D) implantable titanium alloy biomaterials processed by electron beam melting (EBM) that is based on the principle of additive manufacturing. The conventional methods for processing of biomedical devices including freeze casting and sintering are limited because of the difficulties in adaptation at the host site and difference in the micro/macrostructure, mechanical, and physical properties with the host tissue. In this regard, EBM has a unique advantage of processing patient-specific complex designs, which can be either obtained from the computed tomography (CT) scan of the defect site or through a computeraided design (CAD) program. This review introduces and summarizes the evolution and underlying reasons that have motivated 3D printing of scaffolds for tissue regeneration. The overview comprises of two parts for obtaining ultimate functionalities. The first part focuses on obtaining the ultimate functionalities in terms of mechanical properties of 3D titanium alloy scaffolds fabricated by EBM with different characteristics based on design, unit cell, processing parameters, scan speed, porosity, and heat treatment. The second part focuses on the advancement of enhancing biological responses of these 3D scaffolds and the influence of surface modification on cell-material interactions. The overview concludes with a discussion on the clinical trials of these 3D porous scaffolds illustrating their potential in meeting the current needs of the biomedical industry. |
description.department | [nune, krishna chaitanya ; misra, r. devesh kumar] univ texas el paso, mat & biomed engn dept, biomaterials sci & engn lab met, el paso, tx 79968 usa ; [li, shujun] chinese acad sci, inst met res, shenyang 11016, liaoning, peoples r china |
Keyword | Bmp-induced Osteogenesis Free-form Fabrication In-vivo Performance Porous Tantalum Bone Ingrowth Osteoblast Functions Dental Implants Stem-cells Pore-size Surface Modification |
Subject Area | Materials Science, Multidisciplinary |
Funding Organization | Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso; Key Research Program of Frontier Science, CAS [QYZDJ-SSW-JSC031-02] |
Indexed By | SCI |
Language | 英语 |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/79380 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Misra, RDK (reprint author), Univ Texas El Paso, Mat & Biomed Engn Dept, Biomaterials Sci & Engn Lab Met, El Paso, TX 79968 USA. |
Recommended Citation GB/T 7714 | Nune, KC,Li, SJ,Misra, RDK,et al. Advancements in three-dimensional titanium alloy mesh scaffolds fabricated by electron beam melting for biomedical devices: mechanical and biological aspects[J]. SCIENCE CHINA-MATERIALS,2018,61(4):455-474. |
APA | Nune, KC,Li, SJ,Misra, RDK,&Misra, RDK .(2018).Advancements in three-dimensional titanium alloy mesh scaffolds fabricated by electron beam melting for biomedical devices: mechanical and biological aspects.SCIENCE CHINA-MATERIALS,61(4),455-474. |
MLA | Nune, KC,et al."Advancements in three-dimensional titanium alloy mesh scaffolds fabricated by electron beam melting for biomedical devices: mechanical and biological aspects".SCIENCE CHINA-MATERIALS 61.4(2018):455-474. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment