IMR OpenIR
Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure
Nune, KC; Misra, RDK; Gai, X; Li, SJ; Hao, YL; Misra, RDK (reprint author), Univ Texas El Paso, 500 W Univ Ave Engn Bldg,Met Engn M201, El Paso, TX 79968 USA.
2018-03-01
Source PublicationJOURNAL OF BIOMATERIALS APPLICATIONS
ISSN0885-3282
Volume32Issue:8Pages:1032-1048
AbstractThe objective of the study described here is to fundamentally elucidate the biological response of 3D printed Ti-6Al-4V alloy mesh structures that were surface modified to introduce titania nanotubes with an average pore size of approximate to 80nm via an electrochemical anodization process from the perspective of enhancing bioactivity. The bioactivity of the mesh structures were analyzed through immersion test in simulated body fluid, which confirmed the nucleation and growth of fine globular nanoscale apatite on the nanoporous titania-modified (anodized) mesh structure surface, and agglomerated apatite with fine flakes of apatite crystals on as-fabricated mesh structure surface, that were rich in calcium and phosphorous. The cellular activity of bioactive anodized mesh structure was explored in terms of cell-material interactions involving adhesion, proliferation, synthesis of extracellular and intracellular proteins, differentiation, and mineralization. Cells adhered with a sheet-like morphology on as-fabricated mesh structure, whereas, on anodized mesh structure, numerous filopodia-like cellular extensions interacting with nanotube pores were observed. The formation of a bioactive nanoscale apatite, cell-nanotube interactions as imaged via electron microscopy, higher expression of proteins (actin, vinculin, fibronectin, and alkaline phosphatase (ALP)), and calcium content points toward the determining role of anodized mesh structure in modulating osteoblasts functions. The unique combination of nanoporous bioactive titania and interconnected porous architecture of anodized titanium alloy mesh structure provided a multimodal roughness surface ranging from nano to micro to macroscale, which helps in attaining strong primary and secondary fixation of the implant device along with the pathway for supply of nutrients and oxygen to cells and tissue.; The objective of the study described here is to fundamentally elucidate the biological response of 3D printed Ti-6Al-4V alloy mesh structures that were surface modified to introduce titania nanotubes with an average pore size of approximate to 80nm via an electrochemical anodization process from the perspective of enhancing bioactivity. The bioactivity of the mesh structures were analyzed through immersion test in simulated body fluid, which confirmed the nucleation and growth of fine globular nanoscale apatite on the nanoporous titania-modified (anodized) mesh structure surface, and agglomerated apatite with fine flakes of apatite crystals on as-fabricated mesh structure surface, that were rich in calcium and phosphorous. The cellular activity of bioactive anodized mesh structure was explored in terms of cell-material interactions involving adhesion, proliferation, synthesis of extracellular and intracellular proteins, differentiation, and mineralization. Cells adhered with a sheet-like morphology on as-fabricated mesh structure, whereas, on anodized mesh structure, numerous filopodia-like cellular extensions interacting with nanotube pores were observed. The formation of a bioactive nanoscale apatite, cell-nanotube interactions as imaged via electron microscopy, higher expression of proteins (actin, vinculin, fibronectin, and alkaline phosphatase (ALP)), and calcium content points toward the determining role of anodized mesh structure in modulating osteoblasts functions. The unique combination of nanoporous bioactive titania and interconnected porous architecture of anodized titanium alloy mesh structure provided a multimodal roughness surface ranging from nano to micro to macroscale, which helps in attaining strong primary and secondary fixation of the implant device along with the pathway for supply of nutrients and oxygen to cells and tissue.
description.department[nune, k. c. ; misra, r. d. k.] univ texas el paso, dept met mat & biomed engn, el paso, tx 79968 usa ; [gai, x. ; li, s. j. ; hao, y. l.] chinese acad sci, inst met res, shenyang natl lab mat sci, shenyang, liaoning, peoples r china
KeywordTitanium-oxide Nanotubes Treated Porous Titanium Micro-arc Oxidation In-vitro Antiinflammatory Properties Biomedical Applications Tio2 Nanotubes Hydrothermal Treatment Osteoblast Functions Functional-response
Subject AreaEngineering, Biomedical ; Materials Science, bioMaterials
Indexed BySCI
Language英语
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/79443
Collection中国科学院金属研究所
Corresponding AuthorMisra, RDK (reprint author), Univ Texas El Paso, 500 W Univ Ave Engn Bldg,Met Engn M201, El Paso, TX 79968 USA.
Recommended Citation
GB/T 7714
Nune, KC,Misra, RDK,Gai, X,et al. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure[J]. JOURNAL OF BIOMATERIALS APPLICATIONS,2018,32(8):1032-1048.
APA Nune, KC,Misra, RDK,Gai, X,Li, SJ,Hao, YL,&Misra, RDK .(2018).Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure.JOURNAL OF BIOMATERIALS APPLICATIONS,32(8),1032-1048.
MLA Nune, KC,et al."Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure".JOURNAL OF BIOMATERIALS APPLICATIONS 32.8(2018):1032-1048.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Nune, KC]'s Articles
[Misra, RDK]'s Articles
[Gai, X]'s Articles
Baidu academic
Similar articles in Baidu academic
[Nune, KC]'s Articles
[Misra, RDK]'s Articles
[Gai, X]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Nune, KC]'s Articles
[Misra, RDK]'s Articles
[Gai, X]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.