IMR OpenIR
Characteristics of Oxidation and Oxygen Penetration of Alloy 690 in 600 degrees C Aerated Supercritical Water
Zhong, XY; Wu, XQ; Han, EH; Zhong, XY (reprint author), Chinese Acad Sci, Inst Met Res, Liaoning Key Lab Safety & Assessment Tech Nucl Ma, CAS Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Liaoning, Peoples R China.
2018-03-01
Source PublicationJOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN1005-0302
Volume34Issue:3Pages:561-569
AbstractThe oxide films formed on Alloy 690 exposed to 600 degrees C supercritical water were characterized using mass measurement, X-ray diffraction, Raman spectroscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. It was found that the mass gain of the alloy in supercritical water decreased with increasing exposure time. The oxide films have a double-layer structure, with an inner layer rich in Cr and outer layer rich in Ni and Fe after short time and long time exposure. The penetration of the oxide along the grain boundaries was observed, and the penetration depth increased with increasing exposure time. The grain boundaries and voids are the short-path of oxygen diffusion into the metal. (C) 2016 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.; The oxide films formed on Alloy 690 exposed to 600 degrees C supercritical water were characterized using mass measurement, X-ray diffraction, Raman spectroscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. It was found that the mass gain of the alloy in supercritical water decreased with increasing exposure time. The oxide films have a double-layer structure, with an inner layer rich in Cr and outer layer rich in Ni and Fe after short time and long time exposure. The penetration of the oxide along the grain boundaries was observed, and the penetration depth increased with increasing exposure time. The grain boundaries and voids are the short-path of oxygen diffusion into the metal. (C) 2016 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
description.department[zhong, xiangyu ; wu, xinqiang ; han, en-hou] chinese acad sci, inst met res, liaoning key lab safety & assessment tech nucl ma, cas key lab nucl mat & safety assessment, shenyang 110016, liaoning, peoples r china
KeywordHigh-temperature Water Nickel-base Alloys Stress-corrosion Cracking Surface Oxide-films Intergranular Oxidation Elevated-temperatures Electron-microscopy Internal Oxidation Chromium Alloys Behavior
Subject AreaMaterials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
Funding OrganizationScience and Technology Foundation of China [51671201, 51371174]; Science and Technology Project of Yunnan Province; Technology Development (Cooperation) Fund from Yunnan Wenshan Dounan Manganese Industry Co., Ltd.; Innovation Fund of Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS)
Indexed BySCI
Language英语
Document Type期刊论文
Identifierhttp://ir.imr.ac.cn/handle/321006/79449
Collection中国科学院金属研究所
Corresponding AuthorZhong, XY (reprint author), Chinese Acad Sci, Inst Met Res, Liaoning Key Lab Safety & Assessment Tech Nucl Ma, CAS Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Liaoning, Peoples R China.
Recommended Citation
GB/T 7714
Zhong, XY,Wu, XQ,Han, EH,et al. Characteristics of Oxidation and Oxygen Penetration of Alloy 690 in 600 degrees C Aerated Supercritical Water[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2018,34(3):561-569.
APA Zhong, XY,Wu, XQ,Han, EH,&Zhong, XY .(2018).Characteristics of Oxidation and Oxygen Penetration of Alloy 690 in 600 degrees C Aerated Supercritical Water.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,34(3),561-569.
MLA Zhong, XY,et al."Characteristics of Oxidation and Oxygen Penetration of Alloy 690 in 600 degrees C Aerated Supercritical Water".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 34.3(2018):561-569.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Zhong, XY]'s Articles
[Wu, XQ]'s Articles
[Han, EH]'s Articles
Baidu academic
Similar articles in Baidu academic
[Zhong, XY]'s Articles
[Wu, XQ]'s Articles
[Han, EH]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Zhong, XY]'s Articles
[Wu, XQ]'s Articles
[Han, EH]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.