Knowledge Management System Of Institute of metal research,CAS
Tunable metal-insulator transition, Rashba effect and Weyl Fermions in a relativistic charge-ordered ferroelectric oxide | |
He, JG; Di Sante, D; Li, RH; Chen, XQ; Rondinelli, JM; Franchini, C; Rondinelli, JM (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.; Franchini, C (reprint author), Univ Vienna, Fac Phys, A-1080 Vienna, Austria.; Franchini, C (reprint author), Univ Vienna, Ctr Computat Mat Sci, A-1080 Vienna, Austria.; Chen, XQ (reprint author), Univ Sci & Technol China, Chinese Acad Sci, Inst Met Res, Sch Mat Sci & Engn,Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. | |
2018-02-05 | |
Source Publication | NATURE COMMUNICATIONS
![]() |
ISSN | 2041-1723 |
Volume | 9Pages:- |
Abstract | Controllable metal-insulator transitions (MIT), Rashba-Dresselhaus (RD) spin splitting, and Weyl semimetals are promising schemes for realizing processing devices. Complex oxides are a desirable materials platform for such devices, as they host delicate and tunable charge, spin, orbital, and lattice degrees of freedoms. Here, using first-principles calculations and symmetry analysis, we identify an electric-field tunable MIT, RD effect, and Weyl semimetal in a known, charge-ordered, and polar relativistic oxide Ag2BiO3 at room temperature. Remarkably, a centrosymmetric BiO6 octahedral-breathing distortion induces a sizable spontaneous ferroelectric polarization through Bi3+/Bi5+ charge disproportionation, which stabilizes simultaneously the insulating phase. The continuous attenuation of the Bi3+/Bi5+ disproportionation obtained by applying an external electric field reduces the band gap and RD spin splitting and drives the phase transition from a ferroelectric RD insulator to a paraelectric Dirac semimetal, through a topological Weyl semimetal intermediate state. These findings suggest that Ag2BiO3 is a promising material for spin-orbitonic applications.; Controllable metal-insulator transitions (MIT), Rashba-Dresselhaus (RD) spin splitting, and Weyl semimetals are promising schemes for realizing processing devices. Complex oxides are a desirable materials platform for such devices, as they host delicate and tunable charge, spin, orbital, and lattice degrees of freedoms. Here, using first-principles calculations and symmetry analysis, we identify an electric-field tunable MIT, RD effect, and Weyl semimetal in a known, charge-ordered, and polar relativistic oxide Ag2BiO3 at room temperature. Remarkably, a centrosymmetric BiO6 octahedral-breathing distortion induces a sizable spontaneous ferroelectric polarization through Bi3+/Bi5+ charge disproportionation, which stabilizes simultaneously the insulating phase. The continuous attenuation of the Bi3+/Bi5+ disproportionation obtained by applying an external electric field reduces the band gap and RD spin splitting and drives the phase transition from a ferroelectric RD insulator to a paraelectric Dirac semimetal, through a topological Weyl semimetal intermediate state. These findings suggest that Ag2BiO3 is a promising material for spin-orbitonic applications. |
description.department | [he, jiangang ; rondinelli, james m.] northwestern univ, dept mat sci & engn, evanston, il 60208 usa ; [he, jiangang ; franchini, cesare] univ vienna, fac phys, a-1080 vienna, austria ; [he, jiangang ; franchini, cesare] univ vienna, ctr computat mat sci, a-1080 vienna, austria ; [di sante, domenico] univ wurzburg, inst theoret phys & astrophys, hubland campus sud, d-97074 wurzburg, germany ; [li, ronghan ; chen, xing-qiu] univ sci & technol china, chinese acad sci, inst met res, sch mat sci & engn,shenyang natl lab mat sci, shenyang 110016, peoples r china |
Keyword | Augmented-wave Method Wannier Functions States Bulk Semiconductors Perovskites Temperature Ag2bio3 Plane Bands |
Subject Area | Multidisciplinary Sciences |
Funding Organization | FWF project INDOX [I1490-N19]; National Science Fund for Distinguished Young Scholars [51725103]; National Natural Science Foundation of China [51671193, 51474202]; German Research Foundation (DFG) [SFB 1170]; Army Research Office [W911NF-15-1-0017]; [TZ2016004] |
Indexed By | SCI |
Language | 英语 |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/79523 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Rondinelli, JM (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.; Franchini, C (reprint author), Univ Vienna, Fac Phys, A-1080 Vienna, Austria.; Franchini, C (reprint author), Univ Vienna, Ctr Computat Mat Sci, A-1080 Vienna, Austria.; Chen, XQ (reprint author), Univ Sci & Technol China, Chinese Acad Sci, Inst Met Res, Sch Mat Sci & Engn,Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. |
Recommended Citation GB/T 7714 | He, JG,Di Sante, D,Li, RH,et al. Tunable metal-insulator transition, Rashba effect and Weyl Fermions in a relativistic charge-ordered ferroelectric oxide[J]. NATURE COMMUNICATIONS,2018,9:-. |
APA | He, JG.,Di Sante, D.,Li, RH.,Chen, XQ.,Rondinelli, JM.,...&Chen, XQ .(2018).Tunable metal-insulator transition, Rashba effect and Weyl Fermions in a relativistic charge-ordered ferroelectric oxide.NATURE COMMUNICATIONS,9,-. |
MLA | He, JG,et al."Tunable metal-insulator transition, Rashba effect and Weyl Fermions in a relativistic charge-ordered ferroelectric oxide".NATURE COMMUNICATIONS 9(2018):-. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment