Role of the X and n factors in ion-irradiation induced phase transformations of M(n+1)AX(n) phases | |
Wang, CX; Yang, TF; Tracy, CL; Xiao, JR; Liu, SS; Fang, Y; Yan, ZF; Ge, W; Xue, JM; Zhang, J; Wang, JY; Huang, Q; Ewing, RC; Wang, YG; Wang, YG (reprint author), Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. | |
2018-02-01 | |
Source Publication | ACTA MATERIALIA
![]() |
ISSN | 1359-6454 |
Volume | 144Pages:432-446 |
Abstract | Phase transitions induced in hcp M(n+1)AX(n) phases (Ti2AlN, Ti2AlC, and Ti4AlN3) by 1 MeV Au+ ion irradiation were investigated, over a series of ion fluences ranging from 1 x 10(14) to 2 x 10(16) ions cm(-2), by transmission electron microscopy (TEM) and synchrotron grazing incidence X-ray diffraction (GIXRD). Irradiation-induced structural evolutions were observed using high-resolution TEM (HRTEM) imaging and selected area electron diffraction (SAED). Based on phase contrast imaging and electron diffraction pattern (EDP) simulations, the atomic-scale mechanisms for the phase transitions were determined. Transformations of the initial hcp phases to the intermediate gamma-phases and fcc phases were driven by the formation of Ti/Al antisite defects and extended stacking faults induced by ion irradiation. By comparing the transformation behavior of Ti2AlN with that of Ti2AlC and Ti4AlN3 under the same irradiation conditions, using both the experimental data and first-principles calculations, the role of the X and n parameters in the radiation responses of M(n+1)AX(n) phases were elucidated. The susceptibilities of materials in this Ti-Al-X (X = C, N) system to irradiation-induced phase transitions were determined with respect to the bonding characteristics and compositions of these MAX phases. Ti2AlC is slightly less susceptible to the radiation-induced phase transformation than Ti2AlN, which is attributed to the stronger Ti-Al bond covalency in Ti2AlN. Ti4AlN3 is more resistant to radiation-induced phase transformations than is Ti2AlN, due to the lower Al content and lower anion vacancy ratio in the irradiation-induced solid solution phases. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.; Phase transitions induced in hcp M(n+1)AX(n) phases (Ti2AlN, Ti2AlC, and Ti4AlN3) by 1 MeV Au+ ion irradiation were investigated, over a series of ion fluences ranging from 1 x 10(14) to 2 x 10(16) ions cm(-2), by transmission electron microscopy (TEM) and synchrotron grazing incidence X-ray diffraction (GIXRD). Irradiation-induced structural evolutions were observed using high-resolution TEM (HRTEM) imaging and selected area electron diffraction (SAED). Based on phase contrast imaging and electron diffraction pattern (EDP) simulations, the atomic-scale mechanisms for the phase transitions were determined. Transformations of the initial hcp phases to the intermediate gamma-phases and fcc phases were driven by the formation of Ti/Al antisite defects and extended stacking faults induced by ion irradiation. By comparing the transformation behavior of Ti2AlN with that of Ti2AlC and Ti4AlN3 under the same irradiation conditions, using both the experimental data and first-principles calculations, the role of the X and n parameters in the radiation responses of M(n+1)AX(n) phases were elucidated. The susceptibilities of materials in this Ti-Al-X (X = C, N) system to irradiation-induced phase transitions were determined with respect to the bonding characteristics and compositions of these MAX phases. Ti2AlC is slightly less susceptible to the radiation-induced phase transformation than Ti2AlN, which is attributed to the stronger Ti-Al bond covalency in Ti2AlN. Ti4AlN3 is more resistant to radiation-induced phase transformations than is Ti2AlN, due to the lower Al content and lower anion vacancy ratio in the irradiation-induced solid solution phases. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
description.department | [wang, chenxu ; yang, tengfei ; xiao, jingren ; liu, shaoshuai ; fang, yuan ; yan, zhanfeng ; ge, wei ; xue, jianming ; wang, yugang] peking univ, ctr appl phys & technol, state key lab nucl phys & technol, beijing 100871, peoples r china ; [wang, chenxu ; tracy, cameron l. ; ewing, rodney c.] stanford univ, dept geol sci, stanford, ca 94305 usa ; [zhang, jie ; wang, jingyang] chinese acad sci, inst met res, shenyang natl lab mat sci, shenyang 110016, liaoning, peoples r china ; [huang, qing] chinese acad sci, ningbo inst mat technol & engn, ningbo 315201, zhejiang, peoples r china |
Keyword | Augmented-wave Method Max Phases Structural Transitions Electronic-structure Damage Evolution Ti3alc2 Ti2alc Ti3sic2 Ceramics Ti4aln3 |
Subject Area | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
Funding Organization | National Magnetic Confinement Fusion Energy Research Project of China [2015GB113000]; National Natural Science Foundation of China [11675005]; Energy Frontier Research Center "Materials Science of Actinides" - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-SC0001089]; National Science Foundation [ECCS-1542152] |
Indexed By | SCI |
Language | 英语 |
WOS ID | WOS:000424067100040 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.imr.ac.cn/handle/321006/79549 |
Collection | 中国科学院金属研究所 |
Corresponding Author | Wang, YG (reprint author), Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. |
Recommended Citation GB/T 7714 | Wang, CX,Yang, TF,Tracy, CL,et al. Role of the X and n factors in ion-irradiation induced phase transformations of M(n+1)AX(n) phases[J]. ACTA MATERIALIA,2018,144:432-446. |
APA | Wang, CX.,Yang, TF.,Tracy, CL.,Xiao, JR.,Liu, SS.,...&Wang, YG .(2018).Role of the X and n factors in ion-irradiation induced phase transformations of M(n+1)AX(n) phases.ACTA MATERIALIA,144,432-446. |
MLA | Wang, CX,et al."Role of the X and n factors in ion-irradiation induced phase transformations of M(n+1)AX(n) phases".ACTA MATERIALIA 144(2018):432-446. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment