Tensile Strength Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning | |
Teng, Xiaoyuan1,2; Pang, Jianchao1; Liu, Feng2,3; Zou, Chenglu1; Li, Shouxin1; Zhang, Zhefeng1 | |
通讯作者 | Pang, Jianchao(jcpang@imr.ac.cn) ; Zhang, Zhefeng(zhfzhang@imr.ac.cn) |
2024 | |
发表期刊 | STEEL RESEARCH INTERNATIONAL
![]() |
ISSN | 1611-3683 |
卷号 | 95期号:1页码:11 |
摘要 | The ultimate tensile strength (UTS) of gray cast iron (GCI) can be affected by numerous parameters due to its complex microstructures. To further understand the UTS of GCI, it is necessary to evaluate the impact of various parameters. Herein, a UTS prediction method based on microstructure features and machine learning (ML) algorithms is proposed. The six regression algorithms, namely, Bayesian Ridge, Linear Regression, Elastic Net Regression, Support Vector Regression, Gradient Boosting Regressor (GBR), and Random Forest Regressor are used to develop the prediction models. The predicted results show that the GBR has the best prediction performance for the predicted UTS and the error bands within 5%. The feature importance indicates that matrix hardness has the greatest effect on the UTS in the ML models. Several machine learning algorithms are used to evaluate the tensile strength of metals based on microstructure characteristics. These models can accurately predict the tensile properties of gray cast iron and rank the importance of the microstructural features referenced in the models, which can guide the application of machine learning algorithms in tensile prediction and alloy design of gray cast iron.image (c) 2023 WILEY-VCH GmbH |
关键词 | gray cast irons machine learning microstructures ultimate tensile strength |
资助者 | National Natural Science Foundation of China ; National Natural Science Foundation of China (NSFC) |
DOI | 10.1002/srin.202300205 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[51871224] ; National Natural Science Foundation of China[52130002] ; National Natural Science Foundation of China (NSFC) |
WOS研究方向 | Metallurgy & Metallurgical Engineering |
WOS类目 | Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:001181052200034 |
出版者 | WILEY-V C H VERLAG GMBH |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/184695 |
专题 | 中国科学院金属研究所 |
通讯作者 | Pang, Jianchao; Zhang, Zhefeng |
作者单位 | 1.Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China 2.Liaoning Petrochem Univ, Sch Mech Engn, 1 Dandong Rd, Fushun 113001, Peoples R China 3.Jihua Lab, Foshan 528200, Peoples R China |
推荐引用方式 GB/T 7714 | Teng, Xiaoyuan,Pang, Jianchao,Liu, Feng,et al. Tensile Strength Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning[J]. STEEL RESEARCH INTERNATIONAL,2024,95(1):11. |
APA | Teng, Xiaoyuan,Pang, Jianchao,Liu, Feng,Zou, Chenglu,Li, Shouxin,&Zhang, Zhefeng.(2024).Tensile Strength Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning.STEEL RESEARCH INTERNATIONAL,95(1),11. |
MLA | Teng, Xiaoyuan,et al."Tensile Strength Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning".STEEL RESEARCH INTERNATIONAL 95.1(2024):11. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论