IMR OpenIR
Tensile Strength Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning
Teng, Xiaoyuan1,2; Pang, Jianchao1; Liu, Feng2,3; Zou, Chenglu1; Li, Shouxin1; Zhang, Zhefeng1
通讯作者Pang, Jianchao(jcpang@imr.ac.cn) ; Zhang, Zhefeng(zhfzhang@imr.ac.cn)
2024
发表期刊STEEL RESEARCH INTERNATIONAL
ISSN1611-3683
卷号95期号:1页码:11
摘要The ultimate tensile strength (UTS) of gray cast iron (GCI) can be affected by numerous parameters due to its complex microstructures. To further understand the UTS of GCI, it is necessary to evaluate the impact of various parameters. Herein, a UTS prediction method based on microstructure features and machine learning (ML) algorithms is proposed. The six regression algorithms, namely, Bayesian Ridge, Linear Regression, Elastic Net Regression, Support Vector Regression, Gradient Boosting Regressor (GBR), and Random Forest Regressor are used to develop the prediction models. The predicted results show that the GBR has the best prediction performance for the predicted UTS and the error bands within 5%. The feature importance indicates that matrix hardness has the greatest effect on the UTS in the ML models. Several machine learning algorithms are used to evaluate the tensile strength of metals based on microstructure characteristics. These models can accurately predict the tensile properties of gray cast iron and rank the importance of the microstructural features referenced in the models, which can guide the application of machine learning algorithms in tensile prediction and alloy design of gray cast iron.image (c) 2023 WILEY-VCH GmbH
关键词gray cast irons machine learning microstructures ultimate tensile strength
资助者National Natural Science Foundation of China ; National Natural Science Foundation of China (NSFC)
DOI10.1002/srin.202300205
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[51871224] ; National Natural Science Foundation of China[52130002] ; National Natural Science Foundation of China (NSFC)
WOS研究方向Metallurgy & Metallurgical Engineering
WOS类目Metallurgy & Metallurgical Engineering
WOS记录号WOS:001181052200034
出版者WILEY-V C H VERLAG GMBH
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/184695
专题中国科学院金属研究所
通讯作者Pang, Jianchao; Zhang, Zhefeng
作者单位1.Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China
2.Liaoning Petrochem Univ, Sch Mech Engn, 1 Dandong Rd, Fushun 113001, Peoples R China
3.Jihua Lab, Foshan 528200, Peoples R China
推荐引用方式
GB/T 7714
Teng, Xiaoyuan,Pang, Jianchao,Liu, Feng,et al. Tensile Strength Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning[J]. STEEL RESEARCH INTERNATIONAL,2024,95(1):11.
APA Teng, Xiaoyuan,Pang, Jianchao,Liu, Feng,Zou, Chenglu,Li, Shouxin,&Zhang, Zhefeng.(2024).Tensile Strength Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning.STEEL RESEARCH INTERNATIONAL,95(1),11.
MLA Teng, Xiaoyuan,et al."Tensile Strength Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning".STEEL RESEARCH INTERNATIONAL 95.1(2024):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Teng, Xiaoyuan]的文章
[Pang, Jianchao]的文章
[Liu, Feng]的文章
百度学术
百度学术中相似的文章
[Teng, Xiaoyuan]的文章
[Pang, Jianchao]的文章
[Liu, Feng]的文章
必应学术
必应学术中相似的文章
[Teng, Xiaoyuan]的文章
[Pang, Jianchao]的文章
[Liu, Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。